Алгоритм Куна для поиска максимального паросочетания — различия между версиями
Freemahn (обсуждение | вклад) (→Реализация) |
м (rollbackEdits.php mass rollback) |
||
(не показано 11 промежуточных версий 6 участников) | |||
Строка 2: | Строка 2: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Если из вершины <tex>x</tex> не существует | + | Если из вершины <tex>x</tex> не существует [[Теорема о максимальном паросочетании и дополняющих цепях|дополняющей цепи]] относительно паросочетания <tex>M</tex> и паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи, тогда из <tex>x</tex> не существует дополняющей цепи в <tex>M'</tex>. |
|proof= | |proof= | ||
[[Файл:Kuhn2.png|thumb|right|300x300px|Рисунок 1.]] | [[Файл:Kuhn2.png|thumb|right|300x300px|Рисунок 1.]] | ||
Строка 14: | Строка 14: | ||
:: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br> | :: (Случай, когда <tex>NP</tex> принадлежит паросочетанию <tex>M'</tex> полностью симметричен.)<br><br> | ||
: Поскольку паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex>, в паросочетание <tex>M</tex> входило ребро <tex>NP</tex>, а ребро <tex>MP</tex> нет. | : Поскольку паросочетание <tex>M'</tex> получается из <tex>M</tex> изменением вдоль дополняющей цепи <tex>(y \rightsquigarrow z)</tex>, в паросочетание <tex>M</tex> входило ребро <tex>NP</tex>, а ребро <tex>MP</tex> нет. | ||
− | : Кроме того, ребро <tex>QP</tex> не лежит ни в исходном паросочетании <tex>M</tex>, ни в паросочетании <tex>M'</tex>, в противном случае оказалось бы, что вершина <tex>p</tex> инцидентна нескольким | + | : Кроме того, ребро <tex>QP</tex> не лежит ни в исходном паросочетании <tex>M</tex>, ни в паросочетании <tex>M'</tex>, в противном случае оказалось бы, что вершина <tex>p</tex> инцидентна нескольким рёбрам из паросочетания, что противоречит определению паросочетания.<br><br> |
:Тогда заметим, что цепь <tex>(x \rightsquigarrow z)</tex>, полученная объединением цепей <tex>(x \rightsquigarrow p)</tex> и <tex>(p \rightsquigarrow z)</tex>, по определению будет дополняющей в паросочетании <tex>M</tex>, что приводит к противоречию, поскольку в паросочетании <tex>M</tex> из вершины <tex>x</tex> не существует дополняющей цепи. | :Тогда заметим, что цепь <tex>(x \rightsquigarrow z)</tex>, полученная объединением цепей <tex>(x \rightsquigarrow p)</tex> и <tex>(p \rightsquigarrow z)</tex>, по определению будет дополняющей в паросочетании <tex>M</tex>, что приводит к противоречию, поскольку в паросочетании <tex>M</tex> из вершины <tex>x</tex> не существует дополняющей цепи. | ||
}} | }} | ||
==Алгоритм== | ==Алгоритм== | ||
− | Задан граф <tex>G\langle V, E \rangle</tex>, про который известно, что он двудольный, но разбиение не задано явно.Требуется найти наибольшее паросочетание в | + | Задан граф <tex>G\langle V, E \rangle</tex>, про который известно, что он двудольный, но разбиение не задано явно. Требуется найти наибольшее паросочетание в нём |
Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное. | Алгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное. | ||
Строка 36: | Строка 36: | ||
==Реализация== | ==Реализация== | ||
− | * Граф <tex>G\langle V, E \rangle</tex> хранится в матрице смежности <tex>g[i][j]</tex> размера n | + | * Граф <tex>G\langle V, E \rangle</tex> хранится в матрице смежности <tex>g[i][j]</tex> размера <tex>n </tex> на <tex>n</tex> |
+ | *<tex>n = |V|</tex> | ||
'''bool''' dfs(v: '''int'''): | '''bool''' dfs(v: '''int'''): | ||
Строка 51: | Строка 52: | ||
function '''main'''(): | function '''main'''(): | ||
fill(matching, -1) | fill(matching, -1) | ||
− | '''for''' | + | '''for''' i = 1..n |
fill(used, ''false'') | fill(used, ''false'') | ||
− | dfs( | + | dfs(i) |
− | '''for''' | + | '''for''' i = 1..n |
− | '''if''' (matching[ | + | '''if''' (matching[i] != -1) |
− | print( | + | print(i, " ", matching[i]) |
==Время работы== | ==Время работы== | ||
− | :Итак, алгоритм Куна можно представить как серию из <tex> | + | :Итак, алгоритм Куна можно представить как серию из <tex>n</tex> запусков обхода в глубину на всём графе. |
− | :Следовательно, всего этот алгоритм исполняется за время <tex>O(nm)</tex>, где <tex>m</tex> {{---}} количество | + | :Следовательно, всего этот алгоритм исполняется за время <tex>O(nm)</tex>, где <tex>m</tex> {{---}} количество рёбер, что в худшем случае есть <tex>O(n^3)</tex> |
− | : | + | :Если явно задано разбиение графа на две доли размером <tex>n_1</tex> и <tex>n_2</tex>, то можно запускать <tex>\mathtt{dfs}</tex> только из вершин первой доли, поэтому весь алгоритм исполняется за время <tex>O(n_1m)</tex>. В худшем случае это составляет <tex>O(n_1^2n_2).</tex> |
− | |||
==Ссылки== | ==Ссылки== |
Текущая версия на 19:41, 4 сентября 2022
Теорема
Теорема: |
Если из вершины дополняющей цепи относительно паросочетания и паросочетание получается из изменением вдоль дополняющей цепи, тогда из не существует дополняющей цепи в . не существует |
Доказательство: |
|
Алгоритм
Задан граф
, про который известно, что он двудольный, но разбиение не задано явно. Требуется найти наибольшее паросочетание в нёмАлгоритм можно описать так: сначала возьмём пустое паросочетание, а потом — пока в графе удаётся найти увеличивающую цепь, — будем выполнять чередование паросочетания вдоль этой цепи, и повторять процесс поиска увеличивающей цепи. Как только такую цепь найти не удалось — процесс останавливаем, — текущее паросочетание и есть максимальное.
В массиве
хранятся паросочетания (Если паросочетания с вершиной не существует, то ). А — обычный массив "посещённостей" вершин в обходе в глубину (он нужен, чтобы обход в глубину не заходил в одну вершину дважды). Функция возвращает , если ей удалось найти увеличивающую цепь из вершины , при этом считается, что эта функция уже произвела чередование паросочетания вдоль найденной цепи.Внутри функции просматриваются все рёбра, исходящие из вершины
, и затем проверяется: если это ребро ведёт в ненасыщенную вершину , либо если эта вершина насыщена, но удаётся найти увеличивающую цепь рекурсивным запуском из , то мы говорим, что мы нашли увеличивающую цепь, и перед возвратом из функции с результатом производим чередование в текущем ребре: перенаправляем ребро, смежное с , в вершину .В основной программе сначала указывается, что текущее паросочетание — пустое (массив
заполняется числами ). Затем перебирается вершина , и из неё запускается обход в глубину , предварительно обнулив массив .Стоит заметить, что размер паросочетания легко получить как число вызовов теоремы о максимальном паросочетании и дополняющих цепях и теоремы, описанной выше.
Реализация
- Граф хранится в матрице смежности размера на
bool dfs(v: int): if (used[v]) return false used[v] = true for to in g[v] if (matching[to] == -1 or dfs(matching[to])): matching[to] = v return true return false
function main(): fill(matching, -1) for i = 1..n fill(used, false) dfs(i) for i = 1..n if (matching[i] != -1) print(i, " ", matching[i])
Время работы
- Итак, алгоритм Куна можно представить как серию из запусков обхода в глубину на всём графе.
- Следовательно, всего этот алгоритм исполняется за время , где — количество рёбер, что в худшем случае есть
- Если явно задано разбиение графа на две доли размером и , то можно запускать только из вершин первой доли, поэтому весь алгоритм исполняется за время . В худшем случае это составляет
Ссылки
- Теорема о максимальном паросочетании и дополняющих цепях
- Алгоритм Форда-Фалкерсона для поиска максимального паросочетания
Источники информации
- MAXimal :: algo :: Алгоритм Куна нахождения наибольшего паросочетания
- Асанов М., Баранский В., Расин В. — Дискретная математика: Графы, матроиды, алгоритмы — СПб.: Издательство "Лань", 2010. — 291 стр.