Расширяемое хеширование — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Источники информации)
м (rollbackEdits.php mass rollback)
 
(не показаны 2 промежуточные версии 2 участников)
Строка 41: Строка 41:
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Хеширование]]
 
[[Категория: Хеширование]]
 +
[[Категория: Базы данных]]

Текущая версия на 19:35, 4 сентября 2022

При частом добавлении новых значений в хеш-таблицу может возникнуть ситуация, когда хеш-таблица становится полностью заполненной и требуется перехешировать ее. При малых размерах хеш-таблицы полное перехеширование не вызовет трудностей. При больших размерах хеш-таблицы это требует большого количества времени, также если значения поступают очень часто, то требуется часто перехешировать таблицу либо выделять огромные объемы памяти, которые могут и не понадобиться, а следовательно они просто зарезервируются впустую. Также в стандартной хеш-таблице может произойти коллизия(два разных значения поступают в одну ячейку). Чтобы решить эти проблемы, а также чтобы не выделять много дополнительной памяти можно использовать расширяемое хеширование.

Структура и алгоритм

Метод расширяемого хеширования (англ. extendible hashing) заключается в том, что хеш-таблица представлена как каталог (англ. directory), а каждая ячейка будет указывать на емкость (англ. bucket) которая имеет определенную вместимость (англ. capacity). Сама хеш-таблица будет иметь глобальную глубину (англ. global depth), а каждая из емкостей имеет локальную глубину (англ. local depth). Глобальная глубина показывает сколько последних бит будут использоваться для того чтобы определить в какую емкость следует заносить значения. А из разницы локальной глубины и глобальной глубины можно понять сколько ячеек каталога ссылаются на емкость. Это можно показать формулой [math]K = 2 [/math][math]G-L[/math] где [math]G[/math] — глобальная глубина, [math]L[/math] — локальная глубина, а [math]K[/math] количество ссылающихся ячеек. Для поиска емкости используется цифровое дерево.

Теперь рассмотрим сам алгоритм если нам поступило некоторое значение:

  1. Переводим значение в двоичный вид, смотрим на последние [math]G[/math] битов и решаем в какую емкость отправить значение.
  2. Если емкость имеет свободное место, то помещаем туда значение без всяких хлопот, если же емкость куда следует положить значение переполнена, то cмотрим на локальную глубину емкости:
    1. Если она меньше чем глобальная глубина то значит на емкость есть несколько указателей и нам достаточно перехешировать ее, разделив при этом на две и занести значения в новые две емкости увеличив у этих емкостей локальную глубину на [math]1[/math].
    2. Если же локальная глубина была равна глобальной то мы увеличиваем глобальную глубину на [math]1[/math], удваивая при этом количество ячеек, количество указателей на емкости, а также увеличиваем количество последних бит по которым мы распределяем значения. Далее локальная глубина переполненной емкости становится меньше и мы повторяем предыдущий алгоритм то есть перехешируем емкость, разделим ее на две емкости и так далее.

Пример

Рассмотрим алгоритм на примере.

Пусть у нас есть некий каталог со своими указателями и мы хотим добавить значения [math]9, 20, 26[/math] (смотри рисунок №1) где [math]G[/math] — глобальная глубина, [math]l1, l2, l3, l4[/math] — локальные глубины емкостей, а вместимость емкостей равна [math]3[/math].

Первым на вход поступает значение [math]9[/math]. Представим его в двоичном виде: [math]9 = 8+1 = 1000+1 = 1001[/math]. Окончание [math]01[/math] соответствует второй ячейке значит смотрим на вторую емкость. В ней есть свободное место и мы просто помещаем [math]9[/math] в нее (смотри рисунок №2). На этом работа с [math]9[/math] закончена.

Далее на вход поступает значение [math]20[/math]. Представим его в двоичном виде: [math]20 = 16+4 = 10000+100 = 10100[/math]. Это значение оканчивается на [math]00[/math] и должно пойти в первую емкость, но первая емкость полностью заполнена. Следовательно мы смотрим на локальную глубину первой емкости то есть на [math]l1[/math]. [math]l1 = G[/math] а значит следуя выше описанному алгоритму мы должны удвоить количество ячеек каталога, увеличить глобальную глубину, затем увеличить количество последних бит по которым мы раскидываем значения на [math]1[/math] и перехешировать первую емкость, разделив ее на две, увеличив локальную глубину и разместив значения по новым емкостям (смотри рисунок №3). На этом работа с [math]20[/math] закончена.

Последним на вход поступает значение [math]26[/math]. Представим его в двоичном виде: [math]26 = 16+8+2 = 10000+1000+10 = 11010[/math]. Последние [math]3[/math] бита ([math]010[/math]) соответствуют третьей емкости, но она также полностью заполнена как и во втором случае, но ее локальная глубина меньше чем глобальная глубина, а следовательно нам надо только перехешировать емкость, разделив ее на две, увеличив локальную глубину и разместив значения по новым емкостям (смотри рисунок №4). На этом работа с [math]26[/math] закончена.

рисунок №1
рисунок №2
рисунок №3
рисунок №4

Использование

Чаще всего расширяемое хеширование используется в базах данных так как. Базы данных могут быть крайне большими и перехеширование всей базы данных займет продолжительное время при этом лишая пользователей доступа к базе данных. А при использовании расширяемого хеширования перехешировать придется только малые группы, что не сильно замедлит работу базы данных. Также расширяемое хэширование хорошо работает в условиях динамически изменяемого набора записей в хранимом файле.

См. также

Источники информации

  • Бакнелл Джулиан — Фундаментальные алгоритмы и структуры данных в Delphi — стр. 50.
  • Дейт К. Дж. — Введение в системы баз данных, 8-е издание.: Пер. с англ. — М.: Издательский дом «Вильямс», 2005. — стр. 1236.
  • Wikipedia — Extendible hashing