|
|
(не показано 119 промежуточных версий 2 участников) |
Строка 1: |
Строка 1: |
− | ===Алгоритм разделения АВЛ-дерева на два, где в первом дереве все ключи меньше заданного x, а во втором - больше=== | + | {{Теорема |
− | Пусть у нас есть дерево <tex>T</tex>. Мы должны разбить его на два дерева <tex>T_{1}</tex> и <tex>T_{2}</tex> такие, что <tex>T_{1} \leqslant x</tex> и <tex>x < T_{2}</tex>. | + | |statement= Задача о проверке на пустоту пересечения двух КС-грамматик неразрешима. |
| + | |proof= |
| + | Пусть <tex>A = \{ (G_1, G_2) \mid L(G_1) \cap L(G_2) = \varnothing \}</tex>. Сведем [[Примеры неразрешимых задач: проблема соответствий Поста|проблему соответствий Поста]] к <tex>\overline{A}</tex>, таким образом показав, что дополнение проблемы неразрешимо. Так как рекурсивные языки [[Замкнутость разрешимых и перечислимых языков относительно теоретико-множественных и алгебраических операций|замкнуты относительно дополнения]], то из неразрешимости дополнения проблемы будет следовать неразрешимость самой проблемы. |
| | | |
− | Предположим, что корень нашего дерева <tex>\leqslant x</tex>, в таком случае все левое поддерево вместе с корнем после разделения отойдет в дерево <tex>T_{1}</tex>. Тогда рекурсивно спускаемся в правое поддерево и там проверяем это условие (так как часть правого поддерева тоже может содержать ключи <tex>\leqslant x</tex>). Если же корень оказался <tex>> x</tex>, то мы спускаемся той же рекурсией, но только в левое поддерево и ищем там.
| + | Для любого экземпляра ПСП <tex>(x_1, x_2, ..., x_n)</tex> и <tex>(y_1, y_2, ..., y_n)</tex> над алфавитом <tex>\Sigma</tex> можно подобрать символ <tex>\# \notin \Sigma</tex>. Для каждого экземпляра построим грамматики: |
| + | * <tex>G_1 : S \rightarrow aSa \mid a\#a</tex> для всех <tex>a \in \Sigma</tex>. Тогда <tex>L(G_1) = \{ w\#w^R \mid w \in \Sigma^* \}</tex>, где обозначение <tex>w^R</tex> {{---}} разворот <tex>w</tex>. |
| + | * <tex>G_2 : S \rightarrow x_iSy^R_i \mid x_i\#y^R_i</tex> для всех <tex>i = 1, 2, \dots n</tex>. Тогда <tex>L(G_2) = \{ x_{i_1} x_{i_2} \dots x_{i_m} \# (y_{i_1} y_{i_2} \dots y_{i_m})^R \mid i_1, i_2, \dots i_m \in \{ 1, 2, \dots n \}, m \geqslant 1 \}</tex>. |
| | | |
− | Пусть мы пришли в поддерево <tex>S</tex>, корень которого <tex>\leqslant x</tex>. В таком случае этот корень со своим левым поддеревом должен отойти в дерево <tex>T_{1}</tex>. Поэтому мы делаем следующее: запоминаем ссылку на правое поддерево <tex>S</tex>, удаляем корень, запоминая его значение (не меняя конфигурацию дерева, то есть просто делаем ссылки на него NULL'ами). Таким образом, мы отделяем сбалансированное АВЛ-дерево (бывшее левое поддерево <tex>S</tex>). Делаем новую вершину со значением бывшего корня правым листом самой правой вершины <tex>S</tex> и запускаем балансировку. Обозначим полученное дерево за <tex>T'</tex>. Теперь нам нужно объединить его с уже построенным ранее <tex>T_{1}</tex> (оно может быть пустым, если мы первый раз нашли такое дерево <tex>S</tex>). Для этого мы ищем в дереве <tex>T_{1}</tex> самое правое поддерево <tex>P</tex> высоты, равной высоте <tex>T'</tex> (спускаясь от корня всегда в правые поддеревья). Делаем новое дерево <tex>K</tex>, сливая <tex>P</tex> и <tex>T'</tex> (очевидно, все ключи в <tex>T_{1}</tex> меньше ключей в <tex>T'</tex>, поэтому мы можем это сделать). Теперь в дереве <tex>T_{1}</tex> у отца вершины, в которой мы остановились при поиске дерева <tex>P</tex>, правым поддеревом делаем дерево <tex>K</tex> и запускаем балансировку. После нужно спуститься в правое поддерево бывшего дерева <tex>S</tex> (по ссылке, которую мы ранее запомнили) и обработать его.
| + | Если данный экземпляр ПСП имеет решение, то <tex>L(G_2)</tex> содержит хотя бы одну строку вида <tex>w\#w^R</tex>, поэтому <tex>L(G_1) \cap L(G_2) \ne \varnothing</tex>, и наоборот, если он не имеет решения, то <tex>L(G_2)</tex> не содержит строк такого вида, соответственно <tex>L(G_1) \cap L(G_2) = \varnothing</tex>. |
| | | |
− | Если мы пришли в поддерево <tex>Q</tex>, корень которого <tex>> x</tex>, совершаем аналогичные действия: делаем NULL'ами ссылки на корень <tex>Q</tex>, запоминая ссылку на его левое поддерево. Делаем новую вершину со значением бывшего корня левым листом самой левой вершины <tex>Q</tex> и запускаем балансировку. Объединяем полученное АВЛ-дерево с уже построенным ранее <tex>T_{2}</tex> аналогичным первому случаю способом, только теперь мы ищем самое левое поддерево <tex>T_{2}</tex>.
| + | Таким образом мы свели проблему соответствий Поста к <tex>\overline{A}</tex>, следовательно, задача о проверке на пустоту пересечения двух КС-грамматик неразрешима. |
− | | + | }} |
− | Рассмотри пример (рис. 1). Цветом выделены поддеревья, которые после разделения должны отойти в дерево <tex>T_{1}</tex>. <tex>x = 76</tex>.
| + | Из неразрешимости вышеприведенной задачи следует неразрешимость ряда других задач. Рассмотрим несколько примеров. |
− | | |
− | {| cellpadding="2"
| |
− | | || [[Файл:AVL.jpg|thumb|left|525px|Рис. 1. Разделение АВЛ-дерева на два.]]
| |
− | |}
| |
− | | |
− | Корень дерева <tex>\leqslant x</tex>, поэтому он со всем выделенным поддеревом должен отойти в дерево <tex>T_{1}</tex>. По описанному выше алгоритму отделяем это поддерево с корнем и делаем из них сбалансированное АВЛ-дерево <tex>T'</tex> (рис. 2). Так как это первая ситуация, в которой корень рассматриваемого поддерева был <tex>\leqslant x</tex>, <tex>T'</tex> становится <tex>T_{1}</tex>. Далее по сохраненной ссылке спускаемся в правое поддерево. Его корень <tex>> x</tex>. Следовательно, строим из него и его правого поддерева <tex>T_{2}</tex> и спускаемся в левое поддерево. Снова корень <tex>\leqslant x</tex>. Строим новое <tex>T'</tex> и объединяем его с уже существующим <tex>T_{1}</tex> (рис. 3).
| |
| | | |
− | {| cellpadding="2"
| + | По двум КС-грамматикам <tex>G_1</tex> и <tex>G_2</tex> можно построить КС-грамматику для [[Замкнутость КС-языков относительно различных операций#.D0.9A.D0.BE.D0.BD.D0.BA.D0.B0.D1.82.D0.B5.D0.BD.D0.B0.D1.86.D0.B8.D1.8F|конкатенации]] задаваемых ими языков <tex>L(G_1)L(G_2)</tex>. По аналогии с этим мы можем рассматривать язык <tex>L(G_1)\#L(G_2)\#</tex>, где <tex>\#</tex> {{---}} новый символ, не встречающийся в алфавите. Заметим, что пересечение языков непусто, то есть <tex>L(G_1) \cap L(G_2) \ne \varnothing </tex>, тогда и только тогда, когда <tex>L(G_1)\#L(G_2)\#</tex> содержит [[Алгоритм Ландау-Шмидта#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|тандемный повтор]]. |
− | | || [[Файл:АВВЛ2.jpg|thumb|left|525px|Рис. 2. Создание T'.]]
| |
− | |}
| |
− | {| cellpadding="2"
| |
− | | || [[Файл:AVL3.jpg|thumb|left|1250px|Рис. 3. Объединение T' и T1.]]
| |
− | |}
| |
| | | |
− | Далее действуем по алгоритму и в итоге получаем (рис. 4):
| + | Аналогично можно заметить, что пересечение <tex>L(G_1) \cap L(G_2) \ne \varnothing </tex> тогда и только тогда, когда <tex>L(G_1)\#L(G_2)^R</tex> содержит палиндром. |
| | | |
− | {| cellpadding="2"
| + | Таким образом, мы имеем: |
− | | || [[Файл:End.jpg|thumb|left|525px|Рис. 4. АВЛ-деревья после разделения.]]
| + | {{Утверждение |
− | |}
| + | |statement= Пусть дана грамматика <tex>G</tex>, <tex>L(G) = L</tex>. Тогда следующие задачи неразрешимы: |
− | | + | # Содержит ли <tex>L</tex> тандемный повтор. |
− | Данный алгоритм имеет сложность <tex>O(\log^{2} n)</tex>. Рассмотрим решение, которое имеет сложность <tex>O(\log{n})</tex>.
| + | # Содержит ли <tex>L</tex> палиндром. |
− | | |
− | Вернемся к примеру (рис. 1). Теперь рекурсивно спустимся вниз и оттуда будем строить деревья <tex>T_{1}</tex> и <tex>T_{2}</tex>, передавая наверх корректные АВЛ-деревья. То есть для рис. 1 первым в дерево <tex>T_{1}</tex> придет вершина <tex>75</tex> с левым поддеревом (выделено светло-зеленым цветом), так как это корректное АВЛ-дерево, оно же и вернется из рекурсии. Далее мы попадем в вершину со значением <tex>70</tex> и должны слить ее и ее левое поддерево (выделено светло-синим) с тем, что нам пришло. И сделать это нужно так, чтобы передать наверх корректное АВЛ-дерево. Будем действовать по такому алгоритму, пока не дойдем до вершины.
| |
− | | |
− | Пусть мы пришли в поддерево <tex>S</tex> с корнем <tex>\leqslant x</tex>. Тогда сольем его с уже построенным на тот момент <tex>T_{1}</tex> (<tex>T_{1}</tex> пришло снизу, а значит по условию рекурсии это корректное АВЛ-дерево, <tex>S \leqslant T_{1}</tex> и <tex>h(T_{1}) \leqslant h(S)</tex>). Но так как обычная процедура слияния сливает два АВЛ-дерева, а <tex>S</tex> не является корректным АВЛ-деревом, мы немного ее изменим. Пусть мы в дереве <tex>S</tex> нашли самое правое поддерево <tex>K</tex>, высота которого равна высоте <tex>T_{1}</tex>. Тогда сделаем новое дерево <tex>T'</tex>, корнем которого будет вершина <tex>S</tex> (без нее это дерево является сбалансированным), правым поддеревом {{---}} <tex>T_{1}</tex>, левым {{---}} <tex>K</tex>. И подвесим <tex>T'</tex> на то место, где мы остановились при поиске <tex>K</tex>. Запустим балансировку. В случае, когда корень поддерева, в которое мы пришли, <tex>> x</tex>, все аналогично.
| |
− | | |
− | Разберем пример на рис. 1. Пусть мы рекурсивно спустились до узла <tex>77</tex>. Ключ больше <tex>x</tex>, поэтому эта вершина станет деревом <tex>T_{2}</tex> и передастся наверх. Теперь мы поднялись в узел <tex>75</tex>. Он со своим левым поддеревом станет деревом <tex>T_{1}</tex> и мы снова поднимемся наверх в узел <tex>70</tex>. Он со своим левым поддеревом снова должен отойти в дерево <tex>T_{1}</tex>, и так как теперь дерево <tex>T_{1}</tex> уже не пустое, то их надо слить. После слияния по описанному выше алгоритму получим (рис. 5)
| |
− | | |
− | {| cellpadding="2"
| |
− | | || [[Файл:Ex.jpg|thumb|left|525px|Рис. 5.]]
| |
− | |}
| |
− | | |
− | После мы поднимемся в вершину с ключом <tex>80</tex>. Она с правым поддеревом отойдет в дерево <tex>T_{2}</tex> (рис. 6).
| |
− | | |
− | {| cellpadding="2"
| |
− | | || [[Файл:Ex2am.jpg|thumb|left|525px|Рис. 6.]]
| |
− | |}
| |
− | | |
− | И на последней итерации мы поднимемся в корень дерева с ключом <tex>50</tex>, он с левым поддеревом отойдет в дерево <tex>T_{1}</tex>, после чего алгоритм завершится.
| |
− | | |
− | Пусть поддеревьев с ключами <tex>\leqslant x</tex> оказалось больше, чем поддеревьев с ключами <tex>> x</tex>. Докажем для них логарифмическую асимптотику. Дерево на последнем уровне имеет высоту <tex>H_{k}</tex> (она может быть не равна <tex>1</tex>, если мы придём в <tex>x</tex>). Его мы передаем наверх и вставляем в поддерево высотой <tex>H_{k-1}</tex>. <tex>H_{k} \leqslant H_{k-1}</tex>, так как разница высот поддеревьев у любой вершины не больше <tex>1</tex>, и мы при переходе от <tex>H_{k}</tex> к <tex>H_{k-1}</tex> поднимаемся как минимум на одну вершину вверх. Слияние этих поддеревьев мы выполним за <tex>H_{k-1} - H_{k}</tex>, получим в итоге дерево высоты не большей, чем <tex>H_{k-1}</tex>. Его мы передадим наверх, поэтому в следующий раз слияние будет выполнено за <tex>H_{k-2} - H_{k - 1}</tex> и так далее. Таким образом мы получим <tex>(H - H_{1}) + (H_{1} - H_{2}) + (H_{2} - H_{3}) + \cdots + (H_{k - 1} - H_{k}) = H - H_{k} = O(\log{n})</tex>.
| |
− | | |
− | Итоговая асимптотика алгоритма {{---}} <tex>O(\log{n})</tex>.
| |
− | | |
− | = Гамма-алгоритм =
| |
− | {{Задача
| |
− | |definition=Определить, является ли граф планарным, и, если да, произвести его плоскую укладку.
| |
| }} | | }} |
− | Существует [[Теорема Понтрягина-Куратовского|теорема Понтрягина-Куратовского]], которая говорит, что граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных <tex> K_{5} </tex> или <tex> K_{3, 3} </tex>. Но этот критерий очень трудно проверить на практике, поэтому данная теорема представляет лишь теоретический интерес.
| |
− |
| |
− | Чтобы проверить планарность графа и произвести его плоскую укладку, удобно пользоваться гамма-алгоритмом.
| |
− |
| |
− | На вход алгоритму подаются графы со следующими свойствами:
| |
− | # Граф связный,
| |
− | # Граф содержит хотя бы один цикл,
| |
− | # Граф не имеет [[Мост, эквивалентные определения|мостов]].
| |
− |
| |
− | Если нарушено свойство <tex>1</tex>, то граф нужно укладывать отдельно по компонентам связности. Если нарушено свойство <tex>2</tex>, то граф {{---}} дерево и нарисовать его плоскую укладку тривиально.
| |
− |
| |
− | Более подробно рассмотрим случай, когда в графе <tex>G</tex> нарушено свойство <tex>3</tex>. Сначала все мосты нужно убрать, далее произвести отдельную укладку всех компонент следующим образом: уложим одну компоненту связности, а следующую компоненту, связанную с первой в графе <tex>G</tex> мостом, будем рисовать в той грани, в которой лежит вершина, принадлежащая мосту. Иначе может сложиться ситуация, когда концевая вершина моста будет находиться внутри плоского графа, а следующая компонента - снаружи. Таким образом мы сможем соединить мостом нужные вершины. Далее будем так поступать с каждой новой компонентой.
| |
− |
| |
− | Рассмотрим работу алгоритма, параллельно разбирая на примере каждый шаг.
| |
− | Пусть дан граф <tex>G</tex> (рис. 1).
| |
− |
| |
− | {| cellpadding="2"
| |
− | | || [[Файл:Гамма-алгоритм1.jpg|thumb|left|425px|Рис. 1. Исходный граф.]]
| |
− | |}
| |