Busy beaver — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 11 промежуточных версий 4 участников) | |||
Строка 8: | Строка 8: | ||
---- | ---- | ||
{{Утверждение | {{Утверждение | ||
− | |statement= | + | |statement= Функция <tex>BB(n)</tex> не убывает. |
− | Функция <tex>BB(n)</tex> не убывает. | + | |proof= Рассмотрим программу длины <tex>n</tex>, совершающую максимальное число шагов. Существует программа длины <tex>n + 1</tex>, которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, <tex>BB</tex> не убывает. |
− | |proof= | ||
− | |||
− | |||
}} | }} | ||
---- | ---- | ||
Строка 28: | Строка 25: | ||
Каждая такая программа делает как минимум <tex>f(n) + 1</tex> шагов. | Каждая такая программа делает как минимум <tex>f(n) + 1</tex> шагов. | ||
− | Так как мы рассматриваем <tex>n</tex> в десятичной записи, то длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. | + | Так как мы рассматриваем <tex>n</tex> в десятичной записи, то длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. Данный переход корректен, так как мы доказали, что <tex>BB(n)</tex> {{---}} монотонно возрастающая функция. Так как <tex>n_0</tex> конечно, то мы всегда можем найти такие значения <tex>n</tex>, при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. |
}} | }} | ||
+ | '''Вывод:''' доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что <tex>BB(n)</tex> невычислима. | ||
---- | ---- | ||
− | ''' | + | {{Утверждение |
+ | |id=proposalU. | ||
+ | |statement=Функция [[Busy beaver]] невычислима. | ||
+ | |proof= По [[Теорема о рекурсии | теореме о рекурсии]], программа может знать свой исходный код. Значит, в неё можно написать функцию <tex> \mathrm{getSrc()} </tex>, которая вернёт строку {{---}} исходный код программы. Предположим, что функция [[Busy beaver]] вычислима. Тогда напишем такую программу | ||
+ | <code> | ||
+ | <tex>p(){:}</tex> | ||
+ | '''for''' i = 1..BB(<tex>|\mathrm{getSrc()}|</tex>) + 1 | ||
+ | '''do''' smth | ||
+ | </code> | ||
+ | |||
+ | Такая программа всегда совершает больше шагов, чем функция <tex> BB </tex> от этой программы. А это невозможно, так <tex> BB(|p|) </tex> равна максимальному числу шагов как раз этой программы. Получили противоречие. | ||
+ | }} | ||
== См. также == | == См. также == |
Текущая версия на 19:37, 4 сентября 2022
Поиск усердных бобров (англ. busy beaver) — известная задача в теории вычислимости. Под усердным бобром в теории вычислимости понимают машину Тьюринга с заданным числом состояний конечного автомата, которая будучи запущенной на пустой ленте, записывает на нее максимальное количество ненулевых символов и останавливается.
В данном конспекте будет рассмотрена функция, которая используется в этой задаче для подсчета числа шагов для завершения программы при определенном числе состояний.
Определение: |
— функция от натурального аргумента , равная максимальному числу шагов, которое может совершить программа длиной символов и затем остановиться. |
Утверждение: |
Функция не убывает. |
Рассмотрим программу длины | , совершающую максимальное число шагов. Существует программа длины , которая делает столько же шагов: получается добавлением в предыдущую одного незначащего символа, например, пробельного. Значит, существует программа длины на один больше, которая делает не меньше шагов. Следовательно, не убывает.
Утверждение: |
вычислимой функции , то есть для всех кроме конечного числа выполнено растет быстрее любой всюду определенной неубывающей |
Докажем, что для любой вычислимой функции
:
k = десятичная запись числа n
m = f(k)
for i = 1 to m + 1
шаг программы
Каждая такая программа делает как минимум Так как мы рассматриваем шагов. в десятичной записи, то длина будет равна , где — длина кода без десятичной записи . Пусть — решение уравнения . Тогда для всех натуральных будет выполнено неравенство: . Данный переход корректен, так как мы доказали, что — монотонно возрастающая функция. Так как конечно, то мы всегда можем найти такие значения , при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано. |
Вывод: доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что
невычислима.Утверждение: |
Функция Busy beaver невычислима. |
По теореме о рекурсии, программа может знать свой исходный код. Значит, в неё можно написать функцию , которая вернёт строку — исходный код программы. Предположим, что функция Busy beaver вычислима. Тогда напишем такую программу
for i = 1..BB( ) + 1 do smth Такая программа всегда совершает больше шагов, чем функция от этой программы. А это невозможно, так равна максимальному числу шагов как раз этой программы. Получили противоречие. |
См. также
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)
- Английская Википедия — Busy beaver
- Федотов П.В., Царев Ф.Н., Шалыто А.А. — Задача поиска усердных бобров и ее решения