NP-полнота BH1N — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 5 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition=<tex> \mathrm{BH_{1N}} = \lbrace \langle m, x, 1^t \rangle \mid m </tex> {{---}} [[Недетерминированные вычисления|недетерминированная машина Тьюринга]], <tex> m(x) = 1, T(m,x) \leqslant t \rbrace </tex>. | + | |definition=<tex> \mathrm{BH_{1N}} </tex> (от ''bounded halting unary non-deterministic'') <tex>= \lbrace \langle m, x, 1^t \rangle \mid m </tex> {{---}} [[Недетерминированные вычисления|недетерминированная машина Тьюринга]], <tex> m(x) = 1, T(m,x) \leqslant t \rbrace </tex>. |
}} | }} | ||
− | |||
То есть <tex> \mathrm{BH_{1N}} </tex> {{---}} язык троек <tex> \langle m, x, 1^t \rangle </tex> таких, что недетерминированная машина Тьюринга <tex> m </tex> на входной строке <tex> x </tex> возращает <tex>1</tex> за время <tex> T(m, x) \leqslant t </tex> и <tex> 1^{t} </tex> {{---}} запись <tex> t </tex> в унарной системе счисления. | То есть <tex> \mathrm{BH_{1N}} </tex> {{---}} язык троек <tex> \langle m, x, 1^t \rangle </tex> таких, что недетерминированная машина Тьюринга <tex> m </tex> на входной строке <tex> x </tex> возращает <tex>1</tex> за время <tex> T(m, x) \leqslant t </tex> и <tex> 1^{t} </tex> {{---}} запись <tex> t </tex> в унарной системе счисления. | ||
Строка 21: | Строка 20: | ||
*[[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи]] | *[[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи]] | ||
*[[Недетерминированные вычисления]] | *[[Недетерминированные вычисления]] | ||
+ | |||
[[Категория: Теория сложности]] | [[Категория: Теория сложности]] | ||
+ | [[Категория: Детерминированные и недетерминированные вычисления, сложность по времени и по памяти ]] | ||
+ | [[Категория: Классы P и NP, NP-полнота]] |
Текущая версия на 19:10, 4 сентября 2022
Определение: |
недетерминированная машина Тьюринга, . | (от bounded halting unary non-deterministic) —
То есть
— язык троек таких, что недетерминированная машина Тьюринга на входной строке возращает за время и — запись в унарной системе счисления.Теорема: |
Доказательство: |
|