NP-полнота задачи о рюкзаке — различия между версиями
(→syntax error fix in Формулировка задачи) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 2 промежуточные версии 2 участников) | |||
Строка 23: | Строка 23: | ||
*Если исходная [[NP-полнота задачи о сумме подмножества|задача о сумме подмножества]] имела решение <math>S'</math>, то набор пар <math>P'</math> с весами, равными числам из <math>S'</math>, будет решением задачи о рюкзаке. | *Если исходная [[NP-полнота задачи о сумме подмножества|задача о сумме подмножества]] имела решение <math>S'</math>, то набор пар <math>P'</math> с весами, равными числам из <math>S'</math>, будет решением задачи о рюкзаке. | ||
*В обратную сторону - аналогично. | *В обратную сторону - аналогично. | ||
+ | |||
+ | [[Категория:NP]] |
Текущая версия на 19:04, 4 сентября 2022
Содержание
Формулировка задачи
В задаче о рюкзаке (Knapsack problem) входными данными являются набор
пар целых чисел , где - вес i-го предмета, а - стоимость, и также два целых числа - максимальный вес и - минимальная стоимость. Требуется определить, можно ли выбрать такой набор предметов, что их суммарная стоимость больше либо равна , а вес меньше или равен :
Доказательство NP-полноты
Для доказательства того, что Knapsack problem NPC, необходимо доказать два факта:
Доказательство принадлежности к NP
В качестве сертификата возьмем удовлетворяющее условию задачи подмножество пар
с суммарным весом, не большим и стоимостью не меньше . Очевидно, оно удовлетворяет всем требованиям, налагаемым на сертификат. Проверяющая функция строится очевидным образом и работает за полиномиальное от размера входа время.Доказательство принадлежности к NPH
Сведем задачу о сумме подмножества к задаче о рюкзаке. Пусть - функция, осуществляющее сведение. Она будет устроена так:
,
То есть, для каждого числа
создадим предмет с весом и стоимостью, равными значению числа . А значения и возьмем равными .- Очевидно, работает за полиномиальное от длины входа время.
- Если исходная задача о сумме подмножества имела решение , то набор пар с весами, равными числам из , будет решением задачи о рюкзаке.
- В обратную сторону - аналогично.