Участник:D1v1nation/TR — различия между версиями
(Новая страница: «{{Определение |definition= '''Транзитивным остовом''' (''transitive reduction'') [[Определение отношения|отн...») |
|||
(не показано 9 промежуточных версий этого же участника) | |||
Строка 5: | Строка 5: | ||
__TOC__ | __TOC__ | ||
− | == Алгоритм для антисимметричных отношений == | + | == Алгоритм построения для антисимметричных отношений == |
+ | === Определения и обозначения === | ||
Для удобства представим отношение в виде графа: <tex> G = \left < V, E \right > </tex>. Его транзитивным остовом будет граф <tex> G^- = \left < V, E^- \right > </tex>. | Для удобства представим отношение в виде графа: <tex> G = \left < V, E \right > </tex>. Его транзитивным остовом будет граф <tex> G^- = \left < V, E^- \right > </tex>. | ||
Строка 16: | Строка 17: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Транзитивным замыканием''' графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V | i \underset{G}{\leadsto} j \ | + | '''Транзитивным замыканием''' графа <tex> G = \left < V, E \right > </tex> называется граф <tex> G^* = \left < V, E^* \right > </tex>, где <tex> E^* = \left \{ (i, j) \in V \times V \mid i \underset{G}{\leadsto} j \right \} </tex>. |
+ | }} | ||
+ | |||
+ | === Теоретическое обоснование алгоритма === | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement= | ||
+ | Граф <tex> G </tex> ацикличен, то есть в нём выполняется следующее: | ||
+ | <tex> \forall i, j \in V \colon i \underset{G}{\overset{+}{\leadsto}} j \Longrightarrow i \neq j </tex>. | ||
+ | |proof= | ||
+ | От противного: пусть <tex> \exists i, j \in V \colon i \underset{G}{\overset{+}{\leadsto}} j, j \underset{G}{\overset{+}{\leadsto}} i, i \neq j</tex>. По антисимметричности исходного отношения получаем <tex> i = j </tex>, что противоречит предположению. | ||
}} | }} | ||
− | |||
− | |||
Докажем теорему, из которой следует алгоритм. | Докажем теорему, из которой следует алгоритм. | ||
Строка 25: | Строка 34: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> G^- = \left < V, E^- \right > </tex>. Тогда <tex> E^- = \left \{ k \underset{G}{\to} m \ | + | Пусть <tex> G^- = \left < V, E^- \right > </tex>. Тогда <tex> E^- = \left \{ k \underset{G}{\to} m \mid \forall l \colon [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> |
|proof= | |proof= | ||
− | Докажем, что <tex> E^- \subseteq \left \{ k \underset{G}{\to} m \ | + | *Докажем, что <tex> E^- \subseteq \left \{ k \underset{G}{\to} m \mid \forall l \colon [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \}</tex>: |
Пусть <tex> G^- </tex> уже построен. Пусть <tex> k \underset{G^-}{\to} m </tex>. Тогда <tex> k \neq m </tex> (так как иначе удаление ребра <tex> (k, m) </tex> из <tex> E^- </tex> приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>. | Пусть <tex> G^- </tex> уже построен. Пусть <tex> k \underset{G^-}{\to} m </tex>. Тогда <tex> k \neq m </tex> (так как иначе удаление ребра <tex> (k, m) </tex> из <tex> E^- </tex> приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>. | ||
− | Пусть <tex> l </tex> — вершина, для которой выполняется <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>. Докажем, что <tex> k = l </tex>, от противного. Пусть <tex> k \neq l </tex>. <tex> G </tex> ацикличен, поэтому <tex> l \neq m </tex>. Поскольку <tex> G^* = (G^-)^* </tex>, верно <tex> k \underset{G^-}{\overset{+}{\leadsto}} l \wedge l \underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G^- </tex> ацикличен, путь из <tex> k </tex> в <tex> l </tex> не может содержать ребра <tex> (k, m) </tex>, аналогично путь из <tex> l </tex> в <tex> m </tex> не может содержать <tex> (k, m) </tex>. Поэтому в <tex> G^- </tex> существует путь из <tex> k </tex> в <tex> m </tex>, не содержащий в себе ребро <tex> (k, m) </tex>, значит, удаление <tex> (k, m) </tex> из <tex> E^- </tex> не изменит транзитивное замыкание, что противоречит условию минимальности <tex> E^- </tex>. Поэтому <tex> \forall l | + | Пусть <tex> l </tex> — вершина, для которой выполняется <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>. Докажем, что <tex> k = l </tex>, от противного. Пусть <tex> k \neq l </tex>. <tex> G </tex> ацикличен, поэтому <tex> l \neq m </tex>. Поскольку <tex> G^* = (G^-)^* </tex>, верно <tex> k \underset{G^-}{\overset{+}{\leadsto}} l \wedge l \underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G^- </tex> ацикличен, путь из <tex> k </tex> в <tex> l </tex> не может содержать ребра <tex> (k, m) </tex>, аналогично путь из <tex> l </tex> в <tex> m </tex> не может содержать <tex> (k, m) </tex>. Поэтому в <tex> G^- </tex> существует путь из <tex> k </tex> в <tex> m </tex>, не содержащий в себе ребро <tex> (k, m) </tex>, значит, удаление <tex> (k, m) </tex> из <tex> E^- </tex> не изменит транзитивное замыкание, что противоречит условию минимальности <tex> E^- </tex>. Поэтому <tex> \forall l \colon [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] </tex>. Поскольку <tex> k \underset{G}{\overset{+}{\leadsto}} m </tex>, существует такая вершина <tex> l </tex>, что <tex> k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m </tex>, что приводит к выводу, что <tex> k \underset{G}{\to} m </tex>. |
− | Докажем, что <tex> \left \{ k \underset{G}{\to} m \ | + | *Докажем, что <tex> \left \{ k \underset{G}{\to} m \mid \forall l \colon [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} \subseteq E^- </tex>: |
− | Предположим, что <tex> k \underset{G}{\to} m </tex> и <tex> \forall l | + | Предположим, что <tex> k \underset{G}{\to} m </tex> и <tex> \forall l \colon [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] </tex>. Докажем, что <tex> k G^- m </tex>, от противного. Предположим, что <tex> (k, m) \notin E^- </tex>. Поскольку <tex> G </tex> ацикличен, <tex> k \neq m </tex> и поэтому <tex> k \underset{G^-}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> (k, m) \notin E^- </tex>, существует вершина <tex> l </tex> такая, что <tex> k \underset{G^-}{\leadsto} l \wedge l \underset{G^-}{\leadsto} m </tex> и <tex> k \neq l \neq m </tex>, поэтому <tex> k \underset{G}{\overset{+}{\leadsto}} l \wedge l \underset{G}{\overset{+}{\leadsto}} m </tex>. Поскольку <tex> G </tex> ацикличен, существует вершина <tex> l' \neq k </tex>, для которой выполняется <tex> k \underset{G}{\overset{+}{\leadsto}} l' \wedge l' \underset{G}{\to} m </tex>, что противоречит нашему предположению. |
− | Так как множества <tex> E^- </tex> и <tex> \left \{ k \underset{G}{\to} m \ | + | *Так как множества <tex> E^- </tex> и <tex> \left \{ k \underset{G}{\to} m \mid \forall l \colon [ k \underset{G}{\leadsto} l \wedge l \underset{G}{\to} m \Longrightarrow k = l ] \right \} </tex> включены друг в друга, они совпадают, что и требовалось доказать. |
}} | }} | ||
=== Псевдокод === | === Псевдокод === | ||
− | '''Set'''<tex>\langle</tex>'''Edge'''<tex>\rangle</tex> transitiveReduction(<tex> | + | '''Set'''<tex>\langle</tex>'''Edge'''<tex>\rangle</tex> transitiveReduction(<tex>V</tex>: '''Set'''<tex>\langle</tex>'''Vertex'''<tex>\rangle</tex>, <tex>E</tex>: '''Set'''<tex>\langle</tex>'''Edge'''<tex>\rangle</tex>): |
− | <tex> | + | <tex>E^- = E</tex> |
− | ''' | + | '''for''' <tex> a \in V</tex> |
− | ''' | + | '''for''' <tex> b \in V</tex> |
− | ''' | + | '''for''' <tex> c \in V</tex> |
− | '''if''' (<tex> \langle a, b \rangle \in | + | '''if''' (<tex> \langle a, b \rangle \in E </tex>) '''and''' (<tex> \langle b, c \rangle \in E </tex>) '''and''' (<tex> \langle a, c \rangle \in E </tex>) |
− | <tex> | + | <tex>E^- = E^- \setminus \{ \langle a, c \rangle \}</tex> |
− | '''return''' <tex> | + | '''return''' <tex>E^-</tex> |
+ | == См. также == | ||
+ | *[[Транзитивное замыкание]] | ||
== Источники == | == Источники == | ||
* [http://en.wikipedia.org/wiki/Transitive_reduction Wikipedia: Transitive reduction] | * [http://en.wikipedia.org/wiki/Transitive_reduction Wikipedia: Transitive reduction] | ||
* [http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-1987/1987-25.pdf J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs», 1987] | * [http://archive.cs.uu.nl/pub/RUU/CS/techreps/CS-1987/1987-25.pdf J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs», 1987] | ||
+ | |||
+ | <nowiki> | ||
+ | [[Категория: Дискретная математика и алгоритмы]] | ||
+ | |||
+ | [[Категория:Отношения]] | ||
+ | |||
+ | плашечки раскомментируем после мёрджа | ||
+ | </nowiki> |
Текущая версия на 04:30, 15 июня 2016
Определение: |
Транзитивным остовом (transitive reduction) отношения на множестве называется минимальное отношение на такое, что транзитивное замыкание равно транзитивному замыканию . |
Содержание
Алгоритм построения для антисимметричных отношений
Определения и обозначения
Для удобства представим отношение в виде графа:
. Его транзитивным остовом будет граф .Введём несколько обозначений:
- — в графе есть ребро из вершины в ;
- — в графе есть путь (возможно, рёберно пустой) из вершины в ;
- — в графе есть рёберно непустой путь из вершины в .
Также введём определение транзитивного замыкания в терминах теории графов:
Определение: |
Транзитивным замыканием графа | называется граф , где .
Теоретическое обоснование алгоритма
Утверждение: |
Граф ацикличен, то есть в нём выполняется следующее:
. |
От противного: пусть | . По антисимметричности исходного отношения получаем , что противоречит предположению.
Докажем теорему, из которой следует алгоритм.
Теорема: |
Пусть . Тогда |
Доказательство: |
Пусть уже построен. Пусть . Тогда (так как иначе удаление ребра из приведёт к образованию меньшего графа с тем же транзитивным замыканием, что нарушает условие минимальности транзитивного остова). Поэтому по определению транзитивного остова .Пусть — вершина, для которой выполняется . Докажем, что , от противного. Пусть . ацикличен, поэтому . Поскольку , верно . Поскольку ацикличен, путь из в не может содержать ребра , аналогично путь из в не может содержать . Поэтому в существует путь из в , не содержащий в себе ребро , значит, удаление из не изменит транзитивное замыкание, что противоречит условию минимальности . Поэтому . Поскольку , существует такая вершина , что , что приводит к выводу, что .
Предположим, что и . Докажем, что , от противного. Предположим, что . Поскольку ацикличен, и поэтому . Поскольку , существует вершина такая, что и , поэтому . Поскольку ацикличен, существует вершина , для которой выполняется , что противоречит нашему предположению.
|
Псевдокод
SetEdge transitiveReduction( : Set Vertex , : Set Edge ): for for for if ( ) and ( ) and ( ) return
См. также
Источники
- Wikipedia: Transitive reduction
- J.A. La Poutré and J. van Leeuwen. «Maintenance of transitive closures and transitive reductions of graphs», 1987
[[Категория: Дискретная математика и алгоритмы]] [[Категория:Отношения]] плашечки раскомментируем после мёрджа