Независимые случайные величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м (rollbackEdits.php mass rollback)
 
(не показаны 4 промежуточные версии 2 участников)
Строка 3: Строка 3:
 
{{Определение
 
{{Определение
 
|id=def1
 
|id=def1
|definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex>  [[Независимые события|независимы]].<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)</tex>
+
|definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''' (англ. ''independent''), если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex>  [[Независимые события|независимы]].<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
 
}}
 
}}
 
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
 
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
Строка 10: Строка 10:
 
{{Определение
 
{{Определение
 
|id=def2
 
|id=def2
|definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1,...,\xi_n \leqslant \alpha_n</tex> независимы в совокупности.
+
|definition=Случайные величины <tex>\xi_1, \ldots ,\xi_n</tex> называются '''независимы в совокупности''' (англ. ''mutually independent''), если события <tex>\xi_1 \leqslant \alpha_1, \ldots ,\xi_n \leqslant \alpha_n</tex> независимы в совокупности.
 
}}
 
}}
  
Строка 28: Строка 28:
 
Для примера рассмотрим <tex>\alpha = 0, \beta = 0</tex>, остальные рассматриваются аналогично:
 
Для примера рассмотрим <tex>\alpha = 0, \beta = 0</tex>, остальные рассматриваются аналогично:
  
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = </tex> <tex dpi = "160" > \frac{5}{36} </tex>
+
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex>
  
<tex>P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \frac{1}{4} </tex> <tex> \cdot </tex> <tex dpi = "160" > \frac{5}{9} </tex> <tex> = </tex> <tex dpi = "160" > \frac{5}{36} </tex>
+
<tex>P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex> \cdot </tex> <tex dpi = "160" > \dfrac{5}{9} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{5}{36} </tex>
  
 
==== Тетраэдр ====
 
==== Тетраэдр ====
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \mathcal {f} 0, 1, 2, 3 \mathcal {g}</tex>. <tex>\xi (i) = i~mod~2</tex>, <tex>\eta(i) = \left \lfloor i / 2 \right \rfloor</tex>.
+
Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): <tex>\Omega = \{0, 1, 2, 3\}</tex>. <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{2} \right \rfloor</tex>.
  
Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \frac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \frac{1}{2} </tex>.
+
Рассмотрим случай: <tex>\alpha = 0</tex>, <tex>\beta = 1</tex>. <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = 1</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>.
  
 
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
 
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
  
Заметим, что если: <tex>\xi (i) = i~mod~3</tex>, <tex>\eta(i) = \left \lfloor i / 3 \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) =  </tex> <tex dpi = "160" > \frac{1}{2} </tex> , <tex>P(\eta \leqslant 0) =  </tex> <tex dpi = "160" > \frac{3}{4} </tex> , <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) =  </tex> <tex dpi = "160" > \frac{1}{4} </tex> <tex>  \neq P(\xi \leqslant 0) P(\eta \leqslant 0)</tex>.
+
Заметим, что если: <tex>\xi (i) = i \bmod 3</tex>, <tex>\eta(i) = \left \lfloor \dfrac{i}{3} \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) =  </tex> <tex dpi = "160" > \dfrac{1}{2} </tex> , <tex>P(\eta \leqslant 0) =  </tex> <tex dpi = "160" > \dfrac{3}{4} </tex> , <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 0)) =  </tex> <tex dpi = "160" > \dfrac{1}{4} </tex> <tex>  \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 0)</tex>.
  
 
==== Честная игральная кость ====
 
==== Честная игральная кость ====
Рассмотрим вероятностное пространство «честная игральная кость»: <tex>\Omega = \mathcal {f} 1, 2, 3, 4, 5, 6 \mathcal {g}</tex>, <tex>\xi (i) = i~mod~2</tex>, <tex>\eta (i) = \mathcal {b} i / 3 \mathcal {c}</tex>.
+
Рассмотрим вероятностное пространство «честная игральная кость»: <tex>\Omega = \{1, 2, 3, 4, 5, 6\}</tex>, <tex>\xi (i) = i \bmod 2</tex>, <tex>\eta (i) = \dfrac{\mathcal {b} i}{3 \mathcal {c}}</tex>.
 
Для того, чтобы показать, что величины <tex>\xi, \eta</tex> зависимы, надо найти такие <tex>\alpha, \beta</tex>, при которых
 
Для того, чтобы показать, что величины <tex>\xi, \eta</tex> зависимы, надо найти такие <tex>\alpha, \beta</tex>, при которых
 
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
 
<tex>P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)</tex>
  
<tex>При \alpha = 0, \beta = 1</tex>:
+
При <tex>\alpha = 0, \beta = 1</tex>:
  
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \frac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \frac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \frac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \frac{5}{6} </tex>
+
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = </tex> <tex dpi = "160" > \dfrac{2}{6} </tex> <tex> = </tex> <tex dpi = "160" > \dfrac{1}{3} </tex>, <tex>P(\xi \leqslant 0) = </tex> <tex dpi = "160" > \dfrac{1}{2} </tex>, <tex>P(\eta \leqslant 1) = </tex> <tex dpi = "160" > \dfrac{5}{6} </tex>
  
 
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 1)</tex>, откуда видно, что величины не являются независимыми.
 
<tex>P((\xi \leqslant 0)\cap(\eta \leqslant 1)) \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 1)</tex>, откуда видно, что величины не являются независимыми.

Текущая версия на 19:17, 4 сентября 2022

Определения

Определение:
Cлучайные величины [math] \xi[/math] и [math]\eta[/math] называются независимыми (англ. independent), если [math]\forall \alpha ,\beta \in \mathbb R[/math] события [math][ \xi \leqslant \alpha ][/math] и [math][ \eta \leqslant \beta ][/math] независимы.
[math]P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)[/math]

Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.

Независимость в совокупности

Определение:
Случайные величины [math]\xi_1, \ldots ,\xi_n[/math] называются независимы в совокупности (англ. mutually independent), если события [math]\xi_1 \leqslant \alpha_1, \ldots ,\xi_n \leqslant \alpha_n[/math] независимы в совокупности.


Примеры

Карты

Пусть есть колода из [math]36[/math] карт ([math]4[/math] масти и [math]9[/math] номиналов). Мы вытягиваем одну карту из случайным образом перемешанной колоды (вероятности вытягивания каждой отдельной карты равны). Определим следующие случайные величины:

[math]\xi[/math] — масть вытянутой карты : [math]0[/math] — червы, [math]1[/math] — пики, [math]2[/math] — крести, [math]3[/math] — бубны

[math]\eta[/math]: принимает значение [math]0[/math] при вытягивании карт с номиналами [math]6, 7, 8, 9, 10[/math] или [math]1[/math] при вытягивании валета, дамы, короля или туза

Для доказательства того, что [math]\xi, \eta[/math] независимы, требуется рассмотреть все [math]\alpha,\beta[/math] и проверить выполнение равенства: [math]P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) = P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)[/math]

Для примера рассмотрим [math]\alpha = 0, \beta = 0[/math], остальные рассматриваются аналогично:

[math]P((\xi \leqslant 0)\cap(\eta \leqslant 0)) = [/math] [math] \dfrac{5}{36} [/math]

[math]P(\xi \leqslant 0) \cdot P(\eta \leqslant 0) = [/math] [math] \dfrac{1}{4} [/math] [math] \cdot [/math] [math] \dfrac{5}{9} [/math] [math] = [/math] [math] \dfrac{5}{36} [/math]

Тетраэдр

Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): [math]\Omega = \{0, 1, 2, 3\}[/math]. [math]\xi (i) = i \bmod 2[/math], [math]\eta(i) = \left \lfloor \dfrac{i}{2} \right \rfloor[/math].

Рассмотрим случай: [math]\alpha = 0[/math], [math]\beta = 1[/math]. [math]P(\xi \leqslant 0) = [/math] [math] \dfrac{1}{2} [/math], [math]P(\eta \leqslant 1) = 1[/math], [math]P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = [/math] [math] \dfrac{1}{2} [/math].

Для этих значений [math]\alpha[/math] и [math]\beta[/math] события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.

Заметим, что если: [math]\xi (i) = i \bmod 3[/math], [math]\eta(i) = \left \lfloor \dfrac{i}{3} \right \rfloor[/math], то эти величины зависимы: положим [math]\alpha = 0, \beta = 0[/math]. Тогда [math]P(\xi \leqslant 0) = [/math] [math] \dfrac{1}{2} [/math] , [math]P(\eta \leqslant 0) = [/math] [math] \dfrac{3}{4} [/math] , [math]P((\xi \leqslant 0) \cap (\eta \leqslant 0)) = [/math] [math] \dfrac{1}{4} [/math] [math] \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 0)[/math].

Честная игральная кость

Рассмотрим вероятностное пространство «честная игральная кость»: [math]\Omega = \{1, 2, 3, 4, 5, 6\}[/math], [math]\xi (i) = i \bmod 2[/math], [math]\eta (i) = \dfrac{\mathcal {b} i}{3 \mathcal {c}}[/math]. Для того, чтобы показать, что величины [math]\xi, \eta[/math] зависимы, надо найти такие [math]\alpha, \beta[/math], при которых [math]P((\xi \leqslant \alpha)\cap(\eta \leqslant \beta)) \neq P(\xi \leqslant \alpha) \cdot P(\eta \leqslant \beta)[/math]

При [math]\alpha = 0, \beta = 1[/math]:

[math]P((\xi \leqslant 0)\cap(\eta \leqslant 1)) = [/math] [math] \dfrac{2}{6} [/math] [math] = [/math] [math] \dfrac{1}{3} [/math], [math]P(\xi \leqslant 0) = [/math] [math] \dfrac{1}{2} [/math], [math]P(\eta \leqslant 1) = [/math] [math] \dfrac{5}{6} [/math]

[math]P((\xi \leqslant 0)\cap(\eta \leqslant 1)) \neq P(\xi \leqslant 0) \cdot P(\eta \leqslant 1)[/math], откуда видно, что величины не являются независимыми.

См.также

Источники информации