Параллельное программирование — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(23 билет. Консенсус в распределенных системах. Применение консенсуса: выбор лидера, terminating reliable broadcast)
м (rollbackEdits.php mass rollback)
 
(не показано 59 промежуточных версий 11 участников)
Строка 1: Строка 1:
 
[[Категория: Параллельное программирование]]
 
[[Категория: Параллельное программирование]]
 
=Программирование параллельных и распределенных систем=
 
=Программирование параллельных и распределенных систем=
 +
*[[Базовые определения и формализм]]
 +
*[[Алгоритмы взаимного исключения]]
 +
*[[Стек Трайбера]]
 +
*[[Формализм распределённых систем]]
 +
 
==6 семестр==
 
==6 семестр==
 
===Введение. Масштабируемость распределенных и параллельных систем, закон Амдала. Отличия распределенных систем от систем с разделяемой памятью===
 
===Введение. Масштабируемость распределенных и параллельных систем, закон Амдала. Отличия распределенных систем от систем с разделяемой памятью===
Строка 14: Строка 19:
 
===3-4 билеты. Часы с прямой зависимостью (и их свойства) и матричные часы===
 
===3-4 билеты. Часы с прямой зависимостью (и их свойства) и матричные часы===
 
*[[Параллельное программирование: Часы с прямой зависимостью|Часы с прямой зависимостью]]
 
*[[Параллельное программирование: Часы с прямой зависимостью|Часы с прямой зависимостью]]
*[[Параллельное программирование: Матричные часы|Матричные часы]]
+
*[[Параллельное программирование: Матричные часы|Матричные часы]] (билет весной 2019 года убран)
  
 
===5-7 билеты. Взаимное исключение в распределенной системе. Централизованный, алгоритм Лампорта, алгоритм Рикарта и Агравалы===
 
===5-7 билеты. Взаимное исключение в распределенной системе. Централизованный, алгоритм Лампорта, алгоритм Рикарта и Агравалы===
Строка 41: Строка 46:
  
 
===15 билет. Диффундирующие вычисления. Останов. Алгоритм Дейкстры и Шолтена===
 
===15 билет. Диффундирующие вычисления. Останов. Алгоритм Дейкстры и Шолтена===
TODO
+
* [[Диффундирующие вычисления]]
 
+
* [[Алгоритм Дейкстры и Шолтена]]
Алгоритм Дейкстры и Шолтена в английской википедии<ref>http://en.wikipedia.org/wiki/Dijkstra-Scholten_algorithm</ref>.
 
  
 
===16 билет. Локально-стабильные предикаты, согласованные интервалы, барьерная синхронизация (3 алгоритма). Применение для определения взаимной блокировки===
 
===16 билет. Локально-стабильные предикаты, согласованные интервалы, барьерная синхронизация (3 алгоритма). Применение для определения взаимной блокировки===
TODO
 
  
 
*[[Локально стабильный предикат]]
 
*[[Локально стабильный предикат]]
 
*[[Согласованный интервал]]
 
*[[Согласованный интервал]]
 
*[[Барьерная синхронизация (3 алгоритма)]]
 
*[[Барьерная синхронизация (3 алгоритма)]]
 +
*[[Определение взаимной блокировки]]
  
===17-18 билеты. Упорядочивание сообщений. Определения, иерархия порядков. Алгоритм для FIFO. Алгоритм для причинно-согласованного порядка ===
+
===17-19 билеты. Упорядочивание сообщений. Определения, иерархия порядков. Алгоритм для FIFO. Алгоритм для причинно-согласованного порядка. Алгоритм для синхронного порядка ===
TODO
+
* [[Иерархия порядков сообщений]]
 
+
* [[Алгоритм для FIFO порядка]]
Порядок сообщений:
+
* [[Алгоритм для причинно-согласованного порядка]]
# асинхронный (нет порядка)
+
* [[Алгоритм для синхронного порядка]]
# FIFO (сообщения доходят получателю в том порядке, в котором они были ему отправлены в смысле одного потока)
 
# причинно-следственный (если одно сообщение было отправлено раньше другого, то оно будет доставлено раньше другого (в системе целиком, а не в смысле одного потока, как в FIFO)
 
# синхронный (можно выстроить ребра передачи сообщений без пересечений)
 
 
 
Алгоритм FIFO основан на нумерации сообщений.
 
Алгоритм для причинно-согласованного порядка основан на матричных часах.
 
 
 
===19 билет. Упорядочивание сообщений. Определения, иерархия порядков. Алгоритм для синхронного порядка===
 
TODO
 
 
 
Алгоритм для синхронного порядка основан на иерархии процессов.
 
  
 
===20-21 билеты. Общий порядок (total order). Алгоритмы Лампорта и Скина===
 
===20-21 билеты. Общий порядок (total order). Алгоритмы Лампорта и Скина===
TODO? (CHECK)
+
*[[Общий порядок сообщений]]
 
 
*[[Total order]]
 
 
*[[Алгоритм Лампорта]]
 
*[[Алгоритм Лампорта]]
 
*[[Алгоритм Скина]]
 
*[[Алгоритм Скина]]
 
===?? билет. Выбор лидера. Алгоритм Чанди-Робертса, и алгоритм Хирчберга-Синклера===
 
 
'''Алгоритм Чанди-Робертса''' (Chang and Roberts) выбора лидера <ref>http://en.wikipedia.org/wiki/Chang_and_Roberts_algorithm</ref>.
 
 
Пусть процессы находятся в кольце.
 
Посылаем свой номер налево по кольцу.
 
При получении номера справа посылаем налево максимум из своего номера и полученного справа.
 
Если полученный справа номер является нашим номером, то заканчиваем работу.
 
 
'''Алгоритм Хирчберга-Синклера''' <ref>http://en.wikipedia.org/wiki/HS_algorithm</ref> <ref>http://web.cs.gc.cuny.edu/~vmitsou/presentation.pdf слайды 16-18</ref>.
 
  
 
===22 билет. Иерархия ошибок в распределенных системах. Отказ узла в асинхронной системе - невозможность консенсуса (доказательство Фишера-Линча-Патерсона)===
 
===22 билет. Иерархия ошибок в распределенных системах. Отказ узла в асинхронной системе - невозможность консенсуса (доказательство Фишера-Линча-Патерсона)===
TODO
 
  
#Отказ одного или нескольких узлов (crash)
+
* [[Иерархия ошибок в распределённых системах]]
#Отказ одного или нескольких каналов (link failure)
+
* [[Асинхронные и синхронные распределённые системы]]
#Ненадежная доставка сообщений (omission)
+
* [[Консенсус в распределённой системе]]
#Византийская ошибка (byzantine failure) (сломавшийся процесс может слать любой мусор)
+
* [[Теорема Фишера-Линча-Патерсона (FLP)]]
 
 
Теорема FLP (Фишер-Линч-Патерсон):
 
Для асинхронной системы N потоков с хотя бы одним сбойным потоком нельзя построить решение задачи консенсуса.
 
 
 
Решением является уход от асинхронизации, накладывание ограничений на время ответа. Также решение - уйти от требования детерминированности алгоритма.
 
 
 
Инфо: http://bailonga.es/tpmtp/lecture09.pdf + презентация Р.Елизарова
 
  
 
===23 билет. Консенсус в распределенных системах. Применение консенсуса: выбор лидера, terminating reliable broadcast===
 
===23 билет. Консенсус в распределенных системах. Применение консенсуса: выбор лидера, terminating reliable broadcast===
TODO
+
* [[Иерархия ошибок в распределённых системах]]
 
+
* [[Асинхронные и синхронные распределённые системы]]
Результат FLP о невозможности консенсуса верен даже если, процессу разрешено делать операцию «атомарной передачи» сообщения сразу несколько процессам, ибо нет гарантии что все процессы обработают его. Если есть гарантия получения сообщения всеми процессами (или ни одним), то такая операция называется Terminating Reliable Broadcast (TRB). Имея TRB можно тривиально на его основе написать алгоритм консенсуса.
+
* [[Консенсус в распределённой системе]]
 
+
* [[Переформулировки консенсуса в распределённой системе]]
Применение консенсуса:
 
1) Выбор лидера
 
* Каждый процесс предлагает себя. Консенсус определяет лидера для последующего распределенного алгоритма
 
2) Terminating Reliable Broadcast
 
* Надо прийти к консенсусу о том, надо ли обрабатывать
 
полученное сообщение
 
* Таким образом, задача TRB эквивалентна задаче консенсуса
 
  
 
===24 билет. Синхронные системы. Алгоритм для консенсуса в случае отказа заданного числа узлов===
 
===24 билет. Синхронные системы. Алгоритм для консенсуса в случае отказа заданного числа узлов===
  
Пусть в системе имеется ''n'' узлов.
+
* [[Иерархия ошибок в распределённых системах]]
Пусть из них максимум ''f'' не работают.
+
* [[Асинхронные и синхронные распределённые системы]]
Тогда можно решить задачу консенсуса:
+
* [[Консенсус в распределённой системе]]
 
+
* [[Консенсус в синхронных системах]]
*Каждый узел посылает каждому свое число;
 
*Процессы запоминают пришедшие числа;
 
*Новые для себя числа процессы рассылают дальше;
 
*Каждый процесс выбирает минимально известное ему число.
 
 
 
(возможно, стоит дописать)
 
  
 
===25 билет. Синхронные системы. Проблема византийских генералов. Алгоритм для N >= 4, f = 1. Объяснить идею обобщения для f > 1===
 
===25 билет. Синхронные системы. Проблема византийских генералов. Алгоритм для N >= 4, f = 1. Объяснить идею обобщения для f > 1===
 +
* [[Асинхронные и синхронные распределённые системы]]
 +
* [[Проблема византийских генералов]]
 +
* [[Алгоритм Лампорта-Шостака-Пиза]] для решения проблемы
  
'''Задача двух генералов''' — мысленный эксперимент, призванный проиллюстрировать проблему синхронизации состояния двух систем по ненадежному каналу связи. ([https://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%B4%D0%B0%D1%87%D0%B0_%D0%B4%D0%B2%D1%83%D1%85_%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D0%BB%D0%BE%D0%B2 Википедия])
+
===26 билет. Синхронные системы. Проблема византийских генералов. Невозможность решения при N = 3, f = 1===
 +
* [[Асинхронные и синхронные распределённые системы]]
 +
* [[Проблема византийских генералов]]
 +
* [[Невозможность византийского консенсуса]] при N=3, f=1.
  
Два процесса в случае ненадежного канала не могут достичь [[консенсус|консенсуса]].
+
=== 27 билет. Недетерминированные алгоритмы консенсуса. Алгоритм Бен-Ора. ===
 
+
* [[Иерархия ошибок в распределённых системах]]
Consider the last such message that was successfully delivered. If that last message had not been successfully delivered, then one general at least (presumably the receiver) would decide not to attack. From the viewpoint of the sender of that last message, however, the sequence of messages sent and delivered is exactly the same as it would have been, had that message been delivered.
+
* [[Асинхронные и синхронные распределённые системы]]
 
+
* [[Консенсус в распределённой системе]]
Для недетерминнированного - аналогично. Посмотрим на "успешную" последовательность.
+
* [[Алгоритм Бен-Ора]]
И отменим успешность последнего сообщения. Для 1-ого все ок, для 2-ого все испортилось.
 
 
 
===26 билет. Синхронные системы. Проблема византийских генералов. Невозможность решения при N = 3, f = 1===
 
  
'''Задача византийских генералов''' — мысленный эксперимент, призванный проиллюстрировать проблему синхронизации состояния систем в случае, когда коммуникации считаются надёжными, а процессоры — нет. (Вики)
+
=== 28-29 билеты. Paxos. Алгоритм, его свойства. Общие принципы. Основные модификации.===
 +
* [[Консенсус в распределённой системе]]
 +
* [[Replicated State Machine]]
 +
* [[Paxos]]
  
Проблема византийских генералов формулируется так: имеется ''n'' генералов из которых ''f'' являются предателями. Как прийти к консенсусу честным генералам?
+
=== 30 билет. Raft. Алгоритм, его свойства.===
 +
* [[Консенсус в распределённой системе]]
 +
* [[Replicated State Machine]]
 +
* [[Raft]]
  
Известно, что при ''n'' > 3''f'' задача решаема, а иначе нет.
+
=== 31 билет. Транзакции в распределенных системах. 2 Phase Locking===
 +
* [[Транзакции в распределённых системах]]
 +
* [[2 Phase Locking]]
  
*Каждый рассылает каждому свое число;
+
=== 32 билет. Транзакции в распределенных системах. 2 Phase Commit.===
*Каждый рассылает каждому собранные значения;
+
* [[Транзакции в распределённых системах]]
*В полученных векторах каждый проводит голосование.
+
* [[2 Phase Commit]]
  
Можно доказать, например, что при ''n'' = 3, ''f'' = 1 консенсус невозможен.
+
=== 33 билет. СAP теорема (концепции, подходы, без доказательства)===
 +
* [[CAP теорема]]
  
Данный вопрос достаточно хорошо описан в английской версии.
+
=== 34 билет. Gossip. СRDT и дельта-CRDT (концепции, примеры алгоритмов, см. работу с семинара)===
 +
* [[Gossip-протоколы]]
 +
* [[CRDT]]
  
=== 27 билет. Недетерминированные алгоритмы консенсуса. Алгоритм Бен-Ора. ===
+
=== 35 билет. Самостабилизирующиеся алгоритмы. Идея. Алгоритмы взаимного исключения и поиска остовного дерева ===
=== 28 билет. Paxos. Алгоритм, его свойства.===
+
* [[Иерархия ошибок в распределённых системах]]
=== 29 билет. Paxos. Общие принципы. Основные модификации.===
+
* [[Самостабилизирующиеся алгоритмы]]
=== 30 билет. Транзакции в распределенных системах. 2 Phase Locking===
 
=== 31 билет. Транзакции в распределенных системах. 2 Phase Commit.===
 
=== 32 билет. СAP теорема (концепции, подходы, без доказательства)===
 
=== 33 билет. Gossip. СRDT и дельта-CRDT (концепции, примеры алгоритмов, см. работу с семинара)===
 
  
 
==Ссылки==
 
==Ссылки==
 
<references/>
 
<references/>

Текущая версия на 19:33, 4 сентября 2022

Содержание

Программирование параллельных и распределенных систем

6 семестр

Введение. Масштабируемость распределенных и параллельных систем, закон Амдала. Отличия распределенных систем от систем с разделяемой памятью

1-2 билеты. Логические часы Лампорта и векторные часы, их свойства

3-4 билеты. Часы с прямой зависимостью (и их свойства) и матричные часы

5-7 билеты. Взаимное исключение в распределенной системе. Централизованный, алгоритм Лампорта, алгоритм Рикарта и Агравалы

8-10 билеты. Взаимное исключение в распределенной системе. Алгоритм обедающих философов, на основе токена, на основе кворума (простое большинство, рушащиеся стены)

11-12 билеты. Согласованное глобальное состояние (согласованный срез). Алгоритм Чанди-Лампорта. Запоминание сообщений на стороне отправителя и получателя

13-14 билеты. Глобальные свойства. Стабильные и нестабильные предикаты. Слабый конъюнктивный предикат. Централизованный и распределенный алгоритмы

15 билет. Диффундирующие вычисления. Останов. Алгоритм Дейкстры и Шолтена

16 билет. Локально-стабильные предикаты, согласованные интервалы, барьерная синхронизация (3 алгоритма). Применение для определения взаимной блокировки

17-19 билеты. Упорядочивание сообщений. Определения, иерархия порядков. Алгоритм для FIFO. Алгоритм для причинно-согласованного порядка. Алгоритм для синхронного порядка

20-21 билеты. Общий порядок (total order). Алгоритмы Лампорта и Скина

22 билет. Иерархия ошибок в распределенных системах. Отказ узла в асинхронной системе - невозможность консенсуса (доказательство Фишера-Линча-Патерсона)

23 билет. Консенсус в распределенных системах. Применение консенсуса: выбор лидера, terminating reliable broadcast

24 билет. Синхронные системы. Алгоритм для консенсуса в случае отказа заданного числа узлов

25 билет. Синхронные системы. Проблема византийских генералов. Алгоритм для N >= 4, f = 1. Объяснить идею обобщения для f > 1

26 билет. Синхронные системы. Проблема византийских генералов. Невозможность решения при N = 3, f = 1

27 билет. Недетерминированные алгоритмы консенсуса. Алгоритм Бен-Ора.

28-29 билеты. Paxos. Алгоритм, его свойства. Общие принципы. Основные модификации.

30 билет. Raft. Алгоритм, его свойства.

31 билет. Транзакции в распределенных системах. 2 Phase Locking

32 билет. Транзакции в распределенных системах. 2 Phase Commit.

33 билет. СAP теорема (концепции, подходы, без доказательства)

34 билет. Gossip. СRDT и дельта-CRDT (концепции, примеры алгоритмов, см. работу с семинара)

35 билет. Самостабилизирующиеся алгоритмы. Идея. Алгоритмы взаимного исключения и поиска остовного дерева

Ссылки