Участник:Masha — различия между версиями
(→Формула Бержа) |
Masha (обсуждение | вклад) (→Формула Бержа) |
||
(не показаны 42 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
== Формула Бержа == | == Формула Бержа == | ||
+ | |||
+ | {{Определение | ||
+ | |definition =<tex>\mathrm{odd}({G})</tex> {{---}} число нечетных компонент связности в графе <tex>{G}</tex>, где '''нечетная компонента''' (англ. ''odd component'') {{---}} это [[Отношение связности, компоненты связности#def2|компонента связности]], содержащая нечетное число вершин. | ||
+ | }} | ||
+ | |||
+ | |||
{{Лемма | {{Лемма | ||
− | |statement= <tex>(n + |S| + odd(G \setminus S)) \; mod \; 2 | + | |statement= <tex>(n + |S| + odd(G \setminus S)) \; \equiv \; 0 \; ( mod \; 2) \; </tex>, где <tex>G</tex> {{---}} граф с <tex>n</tex> вершинами, <tex>S \in {V}_{G}</tex> |
|proof= | |proof= | ||
− | Удалим из графа <tex>G</tex> множество <tex>S</tex>, получим <tex>t</tex> компонент связности, содержащих <tex>k_1, k_2 ... k_t</tex> вершин | + | Удалим из графа <tex>G</tex> множество <tex>S</tex>, получим <tex>t</tex> компонент связности, содержащих <tex>k_1, k_2 ... k_t</tex> вершин соответственно. |
− | <tex>|S|\; + \; \sum_{i=1}^{k}k_i = n</tex> | + | <tex>|S|\; + \; \sum_{i=1}^{k}k_i \; = \; n \; </tex>, так как в сумме это все вершины исходного графа <tex>G</tex>. |
− | Возьмем данное равенство по модулю два: <tex>(|S| | + | Возьмем данное равенство по модулю два: <tex>(|S|\; + \; \sum_{i=1}^{k}k_i) \; \equiv \; n \; (mod \; 2)</tex> |
− | В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V \; (odd(G \setminus S) + |S|) \; | + | В сумме <tex>\sum_{i=1}^{k}(k_i \; mod \; 2)</tex> число единиц равно числу нечетных компонент <tex>odd(G \setminus S)</tex>. Таким образом, <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; \equiv \; n \; (mod \; 2) \;</tex>. |
}} | }} | ||
− | {{Теорема | + | {{Теорема |
|statement= <tex>def G = \max\limits_{S \in V} (odd(G \setminus S) - |S|)</tex> | |statement= <tex>def G = \max\limits_{S \in V} (odd(G \setminus S) - |S|)</tex> | ||
|proof= | |proof= | ||
− | <tex> \forall S \in V \; (odd(G \setminus S) + |S|) \; | + | <tex> \forall S \in V : \; (odd(G \setminus S) + |S|) \; \equiv \; n ( mod \; 2) \;</tex> |
Строка 21: | Строка 27: | ||
− | 1 | + | 1. Если <tex> \max\limits_{S \in V}(odd(G \setminus S) \; - \; |S|) \; = 0 \; </tex>, тогда для любых <tex>S \in V: \; odd(G \setminus S) \leq |S| \; </tex>, следовательно выполнено условие [[Теорема Татта о существовании полного паросочетания|теоремы Татта]], значит, в графе есть совершенное паросочетание, то есть его дефицит равен нулю. |
− | 2 | + | 2. Если <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k \; </tex>, тогда рассмотрим исходный граф <tex>G</tex> и полный граф <tex>K_k</tex> с <tex>k</tex> вершинами, <tex>W</tex> - вершины <tex>K_k</tex>. Каждую вершину <tex>K_k</tex> соединим с каждой вершиной <tex>G</tex>. Получим граф <tex>H \; = \; K_k + G \;</tex>, докажем, что для него выполнено условие теоремы Татта. Докажем, что для любых <tex>S \in V_{H}: odd(H \setminus S) \; \leq \; |S| \; </tex>. |
+ | Рассмотрим <tex>S \; \subset \; V_H\;</tex>: | ||
− | Если | + | * Если <tex>W \not\subset S</tex>, тогда поскольку граф <tex>K_k</tex> полный и все его вершины связаны с каждой вершиной графа <tex>G</tex>, то граф <tex>H</tex> связный и <tex>odd(H \setminus S) \; = \; 0 \;</tex> или <tex>odd(G \setminus S) \; = \; 1 \;</tex>. |
+ | ** В случае <tex>odd(H \setminus S) \; = \; 0 \; </tex> условие очевидно выполняется, так как для любых <tex>S \in G : 0 \; \leq \; |S| \;</tex>. | ||
+ | ** Рассмотрим случай <tex>odd(H \setminus S) \; = \; 1 \;</tex>, <tex>|V_H| \; = \; n \; + \; k \; = \; n \; + \; odd(G \setminus A) \; - \; |A| \; </tex>, где <tex>A \; = \; arg \max\limits_{S \in V}(odd(G \setminus S) \; - \; |S|) \; </tex>. Разность <tex>odd(G \setminus A) \; - \; |A| \; </tex> имеет ту же четность, что и <tex>n</tex>, и <tex>odd(H \setminus S) \; = \; 1 \;</tex>, поэтому <tex>|V_H|</tex> четно, значит, по лемме, мощность <tex>S</tex> нечетна, следовательно она не равна нулю, значит, <tex> 1 \leq |S| </tex>. | ||
− | |||
− | Таким образом, для графа <tex>H</tex> выполнено условие Татта, следовательно | + | * Если <tex>W \subset S \;</tex>, то <tex>odd(H \setminus S) \; = \; odd(G \setminus (S \cap V)) \; = odd(G \setminus (S \cap V)) \; - \; |S \cap V| \; + \; |S \cap V| \; \leq \; |S \cap V| \; + \; k \leq |S| \; </tex>, так как <tex> \max\limits_{S \in V}(odd(G \setminus S) - |S|) = k \; </tex>. Таким образом, для графа <tex>H</tex> выполнено условие теоремы Татта, следовательно в нём есть полное паросочетание. Рассмотрим полное паросочетание в графе <tex>H</tex>, удалим вершины <tex>W</tex> из графа <tex>H</tex>. Количество непокрытых вершин после удаления не больше, чем количество удаленных вершин <tex>k</tex>, значит, <tex>def(G) \; \leq \; k</tex>. Удалим множество вершин <tex>A \; = \; arg \max\limits_{S \in V}(odd(H \setminus S) \; - \; |S|) \; </tex> из графа <tex>G\;</tex>. Заметим, что после удаления в графе осталось <tex>odd(G \setminus A)\; </tex> нечетных компонент и образовались новые непокрытые вершины, но при этом число нечетных компонент больше числа удаленных на <tex>k</tex>. Значит, хотя бы <tex>k</tex> нечетных компонент содержали исходно непокрытую вершину, следовательно <tex>def(G) \; \geq \; k \; </tex>. Из <tex>def(G) \; \leq \; k</tex> и <tex>def(G) \; \geq \; k \; </tex> следует <tex>def(G) \; = \; k \; </tex>. |
}} | }} | ||
+ | |||
+ | ==См. также== | ||
==Источники информации== | ==Источники информации== | ||
[https://www.youtube.com/watch?v=1KggxCJZFRg {{---}} Лекция А.С. Станкевича] | [https://www.youtube.com/watch?v=1KggxCJZFRg {{---}} Лекция А.С. Станкевича] |
Текущая версия на 22:34, 13 июня 2021
Формула Бержа
Определение: |
компонента связности, содержащая нечетное число вершин. | — число нечетных компонент связности в графе , где нечетная компонента (англ. odd component) — это
Лемма: |
, где — граф с вершинами, |
Доказательство: |
Удалим из графа В сумме множество , получим компонент связности, содержащих вершин соответственно. , так как в сумме это все вершины исходного графа . Возьмем данное равенство по модулю два: число единиц равно числу нечетных компонент . Таким образом, . |
Теорема: |
Доказательство: |
2. Если , тогда рассмотрим исходный граф и полный граф с вершинами, - вершины . Каждую вершину соединим с каждой вершиной . Получим граф , докажем, что для него выполнено условие теоремы Татта. Докажем, что для любых . Рассмотрим :
|