Участник:Fad Oleg — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Стандартный базис)
 
(не показано 17 промежуточных версий этого же участника)
Строка 1: Строка 1:
 +
== Представление булевых функций ==
 +
 +
Теорема Поста открывает путь к представлению булевых функций синтаксическим способом, который в ряде случаев оказывается намного удобнее чем таблицы истинности. Отправной точкой здесь служит нахождение некоторой полной системы функций <tex>\Sigma = \{f_1,\ldots,f_n\}</tex>. Тогда каждая булева функция сможет быть представлена некоторым термом в сигнатуре <tex>\Sigma</tex>, который в данном случае называют также формулой. Относительно выбраной системы функций полезно знать ответы на следующие вопросы:
 +
* Как построить по данной функции представляющую её формулу?
 +
* Как проверить, что две разные формулы эквивалентны, то есть задают одну и ту же функцию?
 +
** В частности: существует ли способ приведения произвольной формулы к эквивалентной её ''канонической'' форме, такой что, две формулы эквивалентны тогда и только тогда, когда их канонические формы совпадают?
 +
* Как по данной функции построить представляющую её формулу с теми или иными заданными свойствами (например, наименьшего размера), и возможно ли это?
 +
 +
Положительные ответы на эти и другие вопросы существенно увеличивают прикладное значение выбранной системы функций.
 +
 +
=== Дизъюнктивная нормальная форма (ДНФ) ===
 +
 +
{{main|ДНФ}}
 +
{{Определение
 +
|definition =
 +
'''Дизъюнктивная нормальная форма (ДНФ)''' (англ. ''disjunctive normal form, DNF'') {{---}} нормальная форма, в которой [[Определение булевой функции|булева функция]] задана как дизъюнкция некоторого числа простых конъюнктов.
 +
}}
 +
Любая булева формула благодаря использованию  закона двойного отрицания, закона де Моргана и закона дистрибутивности может быть записана в ДНФ.
 +
 +
'''Примеры ДНФ:'''
 +
 +
<tex>f(x,y,z) = (x \land y) \lor (y \land \neg {z})</tex>.
 +
 +
<tex>f(x,y,z,t,m) = (x \land z) \lor (y \land x \land \neg{t}) \lor (x \land \neg {m}) </tex>.
 +
 +
=== Конъюнктивная нормальная форма (КНФ) ===
 +
 +
{{main|КНФ}}
 +
{{Определение
 +
|definition =
 +
'''Конъюнктивная нормальная форма, КНФ''' (англ. ''conjunctive normal form, CNF'') {{---}} нормальная форма, в которой [[Определение булевой функции|булева функция]] имеет вид конъюнкции нескольких простых дизъюнктов.
 +
}}
 +
Любая булева формула с помощью использования  закона двойного отрицания, закона де Моргана и закона дистрибутивности может быть записана в КНФ.
 +
 +
'''Пример КНФ:'''
 +
 +
<tex>f(x,y,z) = (x \lor y) \land (y \lor \neg{z})</tex>
 +
 +
<tex>f(x,y,z,t) = (x \lor t) \land (y \lor \neg{t}) \land (\neg{t} \lor \neg{z}) \land (\neg{x} \lor \neg{y} \lor z)</tex>
 +
 +
<tex>f(x,y,z,t,m) = (x \lor m \lor \neg{y}) \land (y \lor \neg{t}) \land (y \lor t \lor \neg{x})</tex>
 +
 +
=== Полином Жегалкина ===
 +
 +
{{main|Полином Жегалкина}}
 +
{{Определение
 +
|definition =
 +
'''Полином Жегалкина''' (англ. ''Zhegalkin polynomial'') {{---}} полином с коэффициентами вида <tex>0</tex> и <tex>1</tex>, где в качестве произведения берётся конъюнкция, а в качестве сложения исключающее или.
 +
}}
 +
Полином Жегалкина имеет следующий вид:
 +
 +
<tex>P = a_{000\ldots000} \oplus a_{100\ldots0} x_1 \oplus a_{010\ldots0}  x_2 \oplus \ldots \oplus a_{00\ldots01}  x_n \oplus a_{110\ldots0} x_1 x_2 \oplus \ldots \oplus a_{00\ldots011} x_{n-1} x_n \oplus \ldots \oplus a_{11\ldots1} x_1 x_2 \ldots x_n  </tex>
 +
 +
С помощью полинома Жегалкина можно выразить любую булеву функцию, так как он строится из следующего набора функций:  <tex>\bigl\langle \wedge, \oplus, 1 \bigr\rangle</tex>, который, в свою очередь, по [[Теорема Поста о полной системе функций|теореме Поста]] является полным.
 +
 +
'''Примеры:'''
 +
 +
<tex>f(x_1,x_2) =  1 \oplus x_1 \oplus x_1 x_2  </tex>
 +
 +
<tex>f(x_1,x_2,x_3) =  x_1 \oplus x_1 x_2 \oplus x_2 x_3 </tex>
 +
 +
<tex>f(x_1,x_2,x_3,x_4) =  1 \oplus x_1  \oplus x_4  \oplus x_1 x_2 \oplus x_1 x_4 \oplus x_2 x_4 \oplus x_1 x_2 x_4 </tex>
 +
 +
===Тождественные функции. Выражение функций друг через друга===
 +
 +
{{Определение
 +
|definition = '''Тождественные функции''' — функции, которые при любых одинаковых аргументах принимают равные значения.
 +
}}
 +
Приведение тождественной функции есть '''выражение булевой функции через другие'''.
 +
 +
Запись булевой функции в ДНФ, КНФ, а также выражение с помощью полинома Жегалкина — способы выражения одних булевых функций через другие.
 +
{{Пример
 +
|example=Выразим следующие функции через систему функций <tex>\{\land, \lor, \lnot \} </tex>.
 +
 +
<tex> x \oplus y = \left ( x \land \lnot y \right ) \lor \left ( \lnot x \land y \right ) = \left ( x \lor \lnot y \right ) \land \left ( \lnot x \lor y \right )</tex>
 +
 +
<tex> x \downarrow y = \lnot \left ( x \lor y \right) = \lnot x \land \lnot y</tex>
 +
 +
<tex>\langle x, y, z \rangle =  \left ( x \land y \right ) \lor \left ( y \land z \right ) \lor \left ( x \land z \right ) = \left ( x \lor y \right ) \land \left ( y \lor z \right ) \land \left ( x \lor z \right )</tex>
 +
}}
 +
=== Подстановка одной функции в другую ===
 +
 +
{{Определение
 +
|definition =
 +
'''Подстановкой''' (англ. ''substitution'') функции <tex>g</tex> в функцию <tex>f</tex> называется замена <tex>i</tex>-того аргумента функции <tex>f</tex> значением функции <tex>g</tex>:
 +
 +
<center><tex>h(x_{1}, \ldots, x_{n+m-1}) = f(x_{1}, \ldots, x_{i-1}, g(x_{i}, \ldots, x_{i+m-1}), x_{i+m}, \ldots, x_{n+m-1})</tex></center>
 +
}}
 +
Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.
 +
 +
При подстановке функции <tex>g</tex> вместо <tex>i</tex>-того аргумента функции <tex>f</tex>, результирующая функция <tex>h</tex> будет принимать аргументы, которые можно разделить на следующие блоки:
 +
 +
{|
 +
|1. <tex> x_{1}, \ldots, x_{i-1}</tex>
 +
|{{---}} аргументы функции <tex>f</tex> до подставленного значения функции <tex>g</tex>
 +
|-
 +
|2. <tex> x_{i}, \ldots, x_{i+m-1}  </tex>
 +
|{{---}} используются как аргументы для вычисления значения функции <tex>g(y_{1}, \ldots, y_{m})</tex>
 +
|-
 +
|3. <tex> x_{i+m}, \ldots, x_{n+m-1} </tex>
 +
|{{---}} аргументы функции <tex>f</tex> после подставленного значения функции <tex>g</tex>
 +
|}
 +
{{Пример
 +
|example=Исходные функции:
 +
#<tex> f(a,b) = a \vee b </tex>
 +
#<tex> g(a)  = \neg a </tex>
 +
 +
<tex> h(a,b) = f(a,g(b)) = a \vee \neg b </tex> {{---}} подстановка функции <tex>g</tex> вместо второго аргумента функции <tex>f</tex>. В данном примере при помощи подстановки мы получили функцию <tex>h(a,b)=a \leftarrow b</tex>.
 +
}}
 +
=== Отождествление переменных ===
 +
{{Определение
 +
|definition=
 +
'''Отождествлением переменных''' (англ. ''identification of variables'') называется подстановка <tex>i</tex>-того аргумента функции <tex>f</tex> вместо <tex>j</tex>-того аргумента:
 +
 +
<center><tex>h(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}) = f(x_{1}, \ldots, x_{i}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n})</tex></center>
 +
}}
 +
Таким образом, при отождествлении <tex>c</tex> переменных мы получаем функцию <tex>h</tex> с количеством аргументов <tex>n-c+1</tex>.
 +
{{Пример
 +
|example=<tex> f(a,b) = a \vee b </tex> {{---}} исходная функция
 +
 +
<tex> h(a)  = a \vee a </tex> {{---}} функция с отождествленными первым и вторым аргументами
 +
 +
Очевидно, в данном примере мы получили функцию <tex>P_{1}</tex> {{---}} проектор единственного аргумента.
 +
}}
 +
=== Схемы из функциональных элементов ===
 +
{{main|Реализация булевой функции схемой из функциональных элементов}}
 +
{{Определение
 +
|definition =
 +
'''Схема из функциональных элементов, логическая схема''' (англ. ''logic diagram'') {{---}} размеченный ориентированный граф без циклов, в некотором базисе <tex>B</tex>,  в котором:
 +
 +
1. вершины, в которые не входят ребра, называются входами схемы, и каждая из них помечена некоторой переменной (разным вершинам соответствуют разные переменные);
 +
 +
2. в каждую из остальных вершин входит одно или более ребер (зависит от выбранного базиса <tex>B</tex>). Такие вершины называются функциональными элементами и реализуют какую-либо булеву функцию из базиса <tex>B</tex>.
 +
}}
 +
Отождествление переменных осуществляется при помощи ветвления проводников.
 +
 +
Чтобы осуществить подстановку одной функции в другую нужно выход логического элемента, который реализует первую функцию, направить на вход логического элемента, который реализует вторую функцию.
 +
 +
'''Некоторые логические элементы:'''
 +
 +
{| class = "wikitable" border = "1"
 +
!-align="center" |И
 +
!-align="center" |ИЛИ
 +
!-align="center" |НЕ
 +
!Штрих Шеффера
 +
!Стрелка Пирса
 +
|-
 +
|[[Image:AND_logic_element.png]]
 +
|[[Image:OR_logic_element.png]]
 +
|[[Image:NOT_logic_element.png]]
 +
|[[Image:NAND_logic_element.png]]
 +
|[[Image:NOR_logic_element.png]]
 +
|}
 +
 
==Стандартный базис==
 
==Стандартный базис==
  
Строка 7: Строка 161:
 
}}
 
}}
  
Если рассматривать множество бинарных булевых функций <tex>P_2(2)</tex>, то для выражения любой булевой функции через стандартный базис достаточно выразить тождественные функции (функции, которые при любых одинаковых аргументах принимают равные значения) для эквиваленции, импликации и константы <tex> 0 </tex> с использованием функций, принадлежащих стандартному базису, т. к. все остальные операции являются их отрицаниями:
+
Если рассматривать множество бинарных булевых функций <tex>P_2(2)</tex>, то для выражения любой булевой функции данного множества (кроме стрелки Пирса и штриха Шеффера) через стандартный базис достаточно выразить тождественные функции для эквиваленции, импликации и константы <tex> 0 </tex> с использованием функций, принадлежащих стандартному базису, т. к. все остальные операции можно выразить через данные 3 функции с помощью отрицания:
  
 
<tex> x \leftrightarrow y = \left ( x \rightarrow y \right ) \land \left ( y \rightarrow x \right ) </tex>
 
<tex> x \leftrightarrow y = \left ( x \rightarrow y \right ) \land \left ( y \rightarrow x \right ) </tex>
Строка 14: Строка 168:
  
 
<tex> 0 = x \land \lnot x </tex>
 
<tex> 0 = x \land \lnot x </tex>
 +
 +
Функции <tex> \mid \ и \downarrow</tex> являются отрицаниями функций <tex> \land \ и \ \lor</tex> соответственно.
 +
 +
<tex> x \mid y = \lnot \left ( x \land y \right )</tex>
 +
 +
<tex> x \downarrow y = \lnot \left ( x \lor y \right )</tex>
  
 
Тождественность функций можно доказать с помощью таблицы истинности.
 
Тождественность функций можно доказать с помощью таблицы истинности.
Строка 19: Строка 179:
 
'''Пример:'''
 
'''Пример:'''
  
Выразить через стандартный базис обратную импликацию <tex> \left (x \leftarrow y \right ) </tex>.
+
Выразим через стандартный базис обратную импликацию <tex> \left (x \leftarrow y \right ) </tex>.
  
 
<tex>x \leftarrow y = \lnot x \rightarrow \lnot y = x \lor \lnot y </tex>
 
<tex>x \leftarrow y = \lnot x \rightarrow \lnot y = x \lor \lnot y </tex>
Строка 46: Строка 206:
 
==Теоремы о числе функций в базисе==
 
==Теоремы о числе функций в базисе==
 
{{Теорема
 
{{Теорема
|statement = Максимально возможное число булевых функций в базисе — четыре.
+
|statement = Максимально возможное число булевых функций в безызбыточном базисе — четыре.
|proof = Рассмотрим произвольный безызбыточный базис <tex> X \subseteq P_2</tex>. Тогда по [[Полные системы функций. Теорема Поста о полной системе функций|теореме Поста]] <tex>X</tex> содержит следующие функции (не обязательно различные):
+
|proof = Рассмотрим произвольный безызбыточный базис <tex> X</tex>. Тогда по [[Полные системы функций. Теорема Поста о полной системе функций|теореме Поста]] <tex>X</tex> содержит следующие функции (не обязательно различные):
  
<tex>f_0 \notin T_0, f_1 \notin T_1, f_s \notin S, f_m \notin M, f_l \notin L</tex>
+
<tex>f_0 \notin T_0, f_1 \notin T_1, f_s \notin S, f_m \notin M, f_l \notin L</tex>, где <tex> T_0, T_1, S, M, L</tex> — классы Поста.
  
Тогда, так как <tex>X</tex> - безызбыточный базис, а система <tex>\{f_0, f_1, f_s, f_m, f_l \}</tex> - полный, то <tex>\left | X \right | \le 5</tex>
+
Значит, так как <tex>X</tex> безызбыточный базис, а система <tex>\{f_0, f_1, f_s, f_m, f_l \}</tex> — полная, то <tex>\left | X \right | \le 5</tex>
  
 
Рассмотрим <tex>f_0</tex>. Возможны два случая:
 
Рассмотрим <tex>f_0</tex>. Возможны два случая:
  
1. <tex> f(1, 1, \ldots, 1) = 0 </tex>, тогда функция <tex>f</tex> также не сохраняет единицу и немонотонная, т.е.
+
1. <tex> f_0(1, 1, \ldots, 1) = 0 </tex>, тогда <tex>f_0</tex> также не сохраняет единицу и немонотонная, т.е.
  
<tex> f_0 = f_1 = f_m </tex>. Тогда <tex>\left | X \right | \le 3</tex>.
+
<tex> f_0 = f_1 = f_m </tex>. Значит, <tex>\left | X \right | \le 3</tex>.
  
2. <tex> f(1, 1, \ldots, 1) = 1 </tex>, тогда функция <tex>f</tex> несамодвойственная, т.е.
+
2. <tex> f_0(1, 1, \ldots, 1) = 1 </tex>, тогда <tex>f_0</tex> несамодвойственная, т.е.
  
<tex> f_0 = f_s </tex>. Тогда <tex>\left | X \right | \le 4</tex>.
+
<tex> f_0 = f_s </tex>. Значит, <tex>\left | X \right | \le 4</tex>.
 
}}
 
}}
  
 
{{Теорема
 
{{Теорема
|statement= Для любого числа <tex>k, 1 \le k \le 4 </tex> найдётся базис <tex> X \subseteq P_2</tex>, что <tex>\left | X \right | = k</tex>.
+
|statement= Для любого числа <tex>k, 1 \le k \le 4 </tex> найдётся базис <tex> X</tex>, что <tex>\left | X \right | = k</tex>.
 
|proof=Приведём примеры базисов для каждого <tex>k</tex>:
 
|proof=Приведём примеры базисов для каждого <tex>k</tex>:
  
Строка 76: Строка 236:
 
<tex>k = 4 \Rightarrow X = \{ 0, 1, x\land y, x\oplus y\oplus z\}</tex>;
 
<tex>k = 4 \Rightarrow X = \{ 0, 1, x\land y, x\oplus y\oplus z\}</tex>;
  
Докажем, последняя система является базисом:
+
Докажем, что последняя система является базисом:
  
 
<tex> 0 \notin T_1</tex>;
 
<tex> 0 \notin T_1</tex>;
Строка 84: Строка 244:
 
<tex> x\land y \notin L\ и\ S</tex>;
 
<tex> x\land y \notin L\ и\ S</tex>;
  
<tex> x\oplus y\oplus z \notin M</tex> (доказывается с помощью таблицы истинности).
+
<tex> x\oplus y\oplus z \notin M</tex>  
 +
 
 +
(доказывается с помощью таблицы истинности).
 
}}
 
}}
  

Текущая версия на 16:22, 27 июня 2021

Представление булевых функций

Теорема Поста открывает путь к представлению булевых функций синтаксическим способом, который в ряде случаев оказывается намного удобнее чем таблицы истинности. Отправной точкой здесь служит нахождение некоторой полной системы функций [math]\Sigma = \{f_1,\ldots,f_n\}[/math]. Тогда каждая булева функция сможет быть представлена некоторым термом в сигнатуре [math]\Sigma[/math], который в данном случае называют также формулой. Относительно выбраной системы функций полезно знать ответы на следующие вопросы:

  • Как построить по данной функции представляющую её формулу?
  • Как проверить, что две разные формулы эквивалентны, то есть задают одну и ту же функцию?
    • В частности: существует ли способ приведения произвольной формулы к эквивалентной её канонической форме, такой что, две формулы эквивалентны тогда и только тогда, когда их канонические формы совпадают?
  • Как по данной функции построить представляющую её формулу с теми или иными заданными свойствами (например, наименьшего размера), и возможно ли это?

Положительные ответы на эти и другие вопросы существенно увеличивают прикладное значение выбранной системы функций.

Дизъюнктивная нормальная форма (ДНФ)

Основная статья: ДНФ
Определение:
Дизъюнктивная нормальная форма (ДНФ) (англ. disjunctive normal form, DNF) — нормальная форма, в которой булева функция задана как дизъюнкция некоторого числа простых конъюнктов.

Любая булева формула благодаря использованию закона двойного отрицания, закона де Моргана и закона дистрибутивности может быть записана в ДНФ.

Примеры ДНФ:

[math]f(x,y,z) = (x \land y) \lor (y \land \neg {z})[/math].

[math]f(x,y,z,t,m) = (x \land z) \lor (y \land x \land \neg{t}) \lor (x \land \neg {m}) [/math].

Конъюнктивная нормальная форма (КНФ)

Основная статья: КНФ
Определение:
Конъюнктивная нормальная форма, КНФ (англ. conjunctive normal form, CNF) — нормальная форма, в которой булева функция имеет вид конъюнкции нескольких простых дизъюнктов.

Любая булева формула с помощью использования закона двойного отрицания, закона де Моргана и закона дистрибутивности может быть записана в КНФ.

Пример КНФ:

[math]f(x,y,z) = (x \lor y) \land (y \lor \neg{z})[/math]

[math]f(x,y,z,t) = (x \lor t) \land (y \lor \neg{t}) \land (\neg{t} \lor \neg{z}) \land (\neg{x} \lor \neg{y} \lor z)[/math]

[math]f(x,y,z,t,m) = (x \lor m \lor \neg{y}) \land (y \lor \neg{t}) \land (y \lor t \lor \neg{x})[/math]

Полином Жегалкина

Основная статья: Полином Жегалкина
Определение:
Полином Жегалкина (англ. Zhegalkin polynomial) — полином с коэффициентами вида [math]0[/math] и [math]1[/math], где в качестве произведения берётся конъюнкция, а в качестве сложения исключающее или.

Полином Жегалкина имеет следующий вид:

[math]P = a_{000\ldots000} \oplus a_{100\ldots0} x_1 \oplus a_{010\ldots0} x_2 \oplus \ldots \oplus a_{00\ldots01} x_n \oplus a_{110\ldots0} x_1 x_2 \oplus \ldots \oplus a_{00\ldots011} x_{n-1} x_n \oplus \ldots \oplus a_{11\ldots1} x_1 x_2 \ldots x_n [/math]

С помощью полинома Жегалкина можно выразить любую булеву функцию, так как он строится из следующего набора функций: [math]\bigl\langle \wedge, \oplus, 1 \bigr\rangle[/math], который, в свою очередь, по теореме Поста является полным.

Примеры:

[math]f(x_1,x_2) = 1 \oplus x_1 \oplus x_1 x_2 [/math]

[math]f(x_1,x_2,x_3) = x_1 \oplus x_1 x_2 \oplus x_2 x_3 [/math]

[math]f(x_1,x_2,x_3,x_4) = 1 \oplus x_1 \oplus x_4 \oplus x_1 x_2 \oplus x_1 x_4 \oplus x_2 x_4 \oplus x_1 x_2 x_4 [/math]

Тождественные функции. Выражение функций друг через друга

Определение:
Тождественные функции — функции, которые при любых одинаковых аргументах принимают равные значения.

Приведение тождественной функции есть выражение булевой функции через другие.

Запись булевой функции в ДНФ, КНФ, а также выражение с помощью полинома Жегалкина — способы выражения одних булевых функций через другие.

Пример:
Выразим следующие функции через систему функций [math]\{\land, \lor, \lnot \} [/math].

[math] x \oplus y = \left ( x \land \lnot y \right ) \lor \left ( \lnot x \land y \right ) = \left ( x \lor \lnot y \right ) \land \left ( \lnot x \lor y \right )[/math]

[math] x \downarrow y = \lnot \left ( x \lor y \right) = \lnot x \land \lnot y[/math]

[math]\langle x, y, z \rangle = \left ( x \land y \right ) \lor \left ( y \land z \right ) \lor \left ( x \land z \right ) = \left ( x \lor y \right ) \land \left ( y \lor z \right ) \land \left ( x \lor z \right )[/math]

Подстановка одной функции в другую

Определение:
Подстановкой (англ. substitution) функции [math]g[/math] в функцию [math]f[/math] называется замена [math]i[/math]-того аргумента функции [math]f[/math] значением функции [math]g[/math]:
[math]h(x_{1}, \ldots, x_{n+m-1}) = f(x_{1}, \ldots, x_{i-1}, g(x_{i}, \ldots, x_{i+m-1}), x_{i+m}, \ldots, x_{n+m-1})[/math]

Допускается также не только подстановка одной функции в другую, но и подстановка функции в саму себя.

При подстановке функции [math]g[/math] вместо [math]i[/math]-того аргумента функции [math]f[/math], результирующая функция [math]h[/math] будет принимать аргументы, которые можно разделить на следующие блоки:

1. [math] x_{1}, \ldots, x_{i-1}[/math] — аргументы функции [math]f[/math] до подставленного значения функции [math]g[/math]
2. [math] x_{i}, \ldots, x_{i+m-1} [/math] — используются как аргументы для вычисления значения функции [math]g(y_{1}, \ldots, y_{m})[/math]
3. [math] x_{i+m}, \ldots, x_{n+m-1} [/math] — аргументы функции [math]f[/math] после подставленного значения функции [math]g[/math]
Пример:
Исходные функции:
  1. [math] f(a,b) = a \vee b [/math]
  2. [math] g(a) = \neg a [/math]
[math] h(a,b) = f(a,g(b)) = a \vee \neg b [/math] — подстановка функции [math]g[/math] вместо второго аргумента функции [math]f[/math]. В данном примере при помощи подстановки мы получили функцию [math]h(a,b)=a \leftarrow b[/math].

Отождествление переменных

Определение:
Отождествлением переменных (англ. identification of variables) называется подстановка [math]i[/math]-того аргумента функции [math]f[/math] вместо [math]j[/math]-того аргумента:
[math]h(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}) = f(x_{1}, \ldots, x_{i}, \ldots, x_{j-1}, x_{i}, x_{j+1}, \ldots, x_{n})[/math]

Таким образом, при отождествлении [math]c[/math] переменных мы получаем функцию [math]h[/math] с количеством аргументов [math]n-c+1[/math].

Пример:
[math] f(a,b) = a \vee b [/math] — исходная функция

[math] h(a) = a \vee a [/math] — функция с отождествленными первым и вторым аргументами

Очевидно, в данном примере мы получили функцию [math]P_{1}[/math] — проектор единственного аргумента.

Схемы из функциональных элементов

Определение:
Схема из функциональных элементов, логическая схема (англ. logic diagram) — размеченный ориентированный граф без циклов, в некотором базисе [math]B[/math], в котором:

1. вершины, в которые не входят ребра, называются входами схемы, и каждая из них помечена некоторой переменной (разным вершинам соответствуют разные переменные);

2. в каждую из остальных вершин входит одно или более ребер (зависит от выбранного базиса [math]B[/math]). Такие вершины называются функциональными элементами и реализуют какую-либо булеву функцию из базиса [math]B[/math].

Отождествление переменных осуществляется при помощи ветвления проводников.

Чтобы осуществить подстановку одной функции в другую нужно выход логического элемента, который реализует первую функцию, направить на вход логического элемента, который реализует вторую функцию.

Некоторые логические элементы:

И ИЛИ НЕ Штрих Шеффера Стрелка Пирса
AND logic element.png OR logic element.png NOT logic element.png NAND logic element.png NOR logic element.png

Стандартный базис

Определение:
Стандартный базис — система булевых функций: [math]\{\land, \lor, \lnot \} [/math]


Если рассматривать множество бинарных булевых функций [math]P_2(2)[/math], то для выражения любой булевой функции данного множества (кроме стрелки Пирса и штриха Шеффера) через стандартный базис достаточно выразить тождественные функции для эквиваленции, импликации и константы [math] 0 [/math] с использованием функций, принадлежащих стандартному базису, т. к. все остальные операции можно выразить через данные 3 функции с помощью отрицания:

[math] x \leftrightarrow y = \left ( x \rightarrow y \right ) \land \left ( y \rightarrow x \right ) [/math]

[math] x \rightarrow y = \lnot x \lor y [/math]

[math] 0 = x \land \lnot x [/math]

Функции [math] \mid \ и \downarrow[/math] являются отрицаниями функций [math] \land \ и \ \lor[/math] соответственно.

[math] x \mid y = \lnot \left ( x \land y \right )[/math]

[math] x \downarrow y = \lnot \left ( x \lor y \right )[/math]

Тождественность функций можно доказать с помощью таблицы истинности.

Пример:

Выразим через стандартный базис обратную импликацию [math] \left (x \leftarrow y \right ) [/math].

[math]x \leftarrow y = \lnot x \rightarrow \lnot y = x \lor \lnot y [/math]

Полнота стандартного базиса

Утверждение:
Стандартный базис является полной системой булевых функций
[math]\triangleright[/math]
Данное утверждение - следствие теоремы об СДНФ. Если рассмотреть функцию, не равную тождественному нулю, то она представима в виде СДНФ, в которой используются функции стандартного базиса. Способ выражения тождественного нуля через функции стандартного базиса уже был описан выше.
[math]\triangleleft[/math]

Замечание:

По закону де Моргана:

[math] x \land y = \lnot \left (\lnot x \lor \lnot y \right ) [/math]

[math] x \lor y = \lnot \left (\lnot x \land \lnot y \right ) [/math]

Следовательно, стандартный базис является избыточным, в то время как безызбыточными являются подмножества системы:

[math] \{ \land , \lnot \} [/math] (конъюнктивный базис Буля)

[math] \{ \lor , \lnot \} [/math] (дизъюнктивный базис Буля)

Теоремы о числе функций в базисе

Теорема:
Максимально возможное число булевых функций в безызбыточном базисе — четыре.
Доказательство:
[math]\triangleright[/math]

Рассмотрим произвольный безызбыточный базис [math] X[/math]. Тогда по теореме Поста [math]X[/math] содержит следующие функции (не обязательно различные):

[math]f_0 \notin T_0, f_1 \notin T_1, f_s \notin S, f_m \notin M, f_l \notin L[/math], где [math] T_0, T_1, S, M, L[/math] — классы Поста.

Значит, так как [math]X[/math] — безызбыточный базис, а система [math]\{f_0, f_1, f_s, f_m, f_l \}[/math] — полная, то [math]\left | X \right | \le 5[/math]

Рассмотрим [math]f_0[/math]. Возможны два случая:

1. [math] f_0(1, 1, \ldots, 1) = 0 [/math], тогда [math]f_0[/math] также не сохраняет единицу и немонотонная, т.е.

[math] f_0 = f_1 = f_m [/math]. Значит, [math]\left | X \right | \le 3[/math].

2. [math] f_0(1, 1, \ldots, 1) = 1 [/math], тогда [math]f_0[/math] несамодвойственная, т.е.

[math] f_0 = f_s [/math]. Значит, [math]\left | X \right | \le 4[/math].
[math]\triangleleft[/math]
Теорема:
Для любого числа [math]k, 1 \le k \le 4 [/math] найдётся базис [math] X[/math], что [math]\left | X \right | = k[/math].
Доказательство:
[math]\triangleright[/math]

Приведём примеры базисов для каждого [math]k[/math]:

[math]k = 1 \Rightarrow X = \{ \downarrow \}[/math];

[math]k = 2 \Rightarrow X = \{ \lnot, \land \}[/math];

[math]k = 3 \Rightarrow X = \{ \land, \oplus, 1\}[/math];

[math]k = 4 \Rightarrow X = \{ 0, 1, x\land y, x\oplus y\oplus z\}[/math];

Докажем, что последняя система является базисом:

[math] 0 \notin T_1[/math];

[math] 1 \notin T_0[/math];

[math] x\land y \notin L\ и\ S[/math];

[math] x\oplus y\oplus z \notin M[/math]

(доказывается с помощью таблицы истинности).
[math]\triangleleft[/math]

Источники

Полные системы булевых функций — Википедия

Категория: Дискретная математика и алгоритмы

Категория: Булевы функции