Материал из Викиконспекты
|
|
(не показано 85 промежуточных версий 3 участников) |
Строка 1: |
Строка 1: |
− | Soft-Max и Soft-Arg-Max. Пусть есть задача мягкой классификации: Алгоритм выдает значения L1, L2, ... Ln, где n - число классов. Li - уверенность алгоритма в том, что объект принадлежит классу i; -oo <=Li <= +oo.
| |
− | Нужно для этих значений найти такие p1,...pn, что pi из [0, 1], а сумма pi = 1, то есть p1..pn - распределение вероятностей.
| |
− | Для этого возьмём экспоненту от L1..Ln; Получим числа от [0;+oo] и нормируем их:
| |
− | pi = exp(Li)/Sum(exp(Li))
| |
− | Выполняется следующее: Li <= Lj => Pi <= Pj
| |
| | | |
− | Есть модель a, возвращающая Li. Необходимо сделать так, чтобы a возвращала pi, при этом оставаясь дифференциируемой.
| |
− | <tex>y =</tex> '''soft-arg-max'''<tex>\left ( x \right )</tex>, где <tex>y_{i} = \frac{\exp\left ( x_{i} \right )}{\sum_{j}\exp\left ( x_{i} \right )}</tex>
| |
Текущая версия на 19:44, 4 сентября 2022