Soft-Max и Soft-Arg-Max — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показаны 82 промежуточные версии 3 участников)
Строка 1: Строка 1:
Soft-Max и Soft-Arg-Max.
 
==Soft-Arg-Max==
 
Пусть есть задача мягкой классификации: Алгоритм выдает значения L1, L2, ... Ln, где n - число классов. Li - уверенность алгоритма в том, что объект принадлежит классу i; -oo <=Li <= +oo.
 
Нужно для этих значений найти такие p1,...pn, что pi из [0, 1], а сумма pi = 1, то есть p1..pn - распределение вероятностей.
 
Для этого возьмём экспоненту от L1..Ln; Получим числа от [0;+oo] и нормируем их:
 
pi = exp(Li)/Sum(exp(Li))
 
Выполняется следующее: Li <= Lj => Pi <= Pj
 
  
Есть модель a, возвращающая Li. Необходимо сделать так, чтобы a возвращала pi, при этом оставаясь дифференциируемой.
 
<tex>y =</tex> '''soft-arg-max'''<tex>\left ( x \right )</tex>, где <tex>y_{i} = \frac{\exp\left ( x_{i} \right )}{\sum_{j}\exp\left ( x_{i} \right )}</tex>
 
 
==Soft-Max==
 

Текущая версия на 19:44, 4 сентября 2022