|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| == Теорема Лагранжа == | | == Теорема Лагранжа == |
| {{Теорема | | {{Теорема |
Текущая версия на 19:25, 4 сентября 2022
Теорема Лагранжа
Теорема (Лагранж): |
|
Доказательство: |
[math]\triangleright[/math] |
Пусть [math]G[/math] — конечная группа, а [math]H[/math] — ее подгруппа. Любой элемент [math]G[/math] входит в некоторый смежный класс по [math]H[/math] ([math]a[/math] входит в [math]aH[/math]). Мощность каждого класса равна [math]\vert H\vert[/math], т.к. отображение [math]x\rightarrow a\cdot x биективно[/math]. Таким образом, вся G распадается на непересекающиеся смежные классы одинаковой мощности. Отсюда очевидно, что [math]\vert G\vert[/math] делится на [math]\vert H\vert[/math]. |
[math]\triangleleft[/math] |
Следствие: [math]a^{\vert G\vert}=e[/math]. Достаточно рассмотреть циклическую подгруппу [math]H=\langle a\rangle[/math]: ее порядок равен порядку элемента [math]a[/math], но [math]a^{\vert G\vert}=a^{\frac{\vert G\vert}{\vert H\vert}\vert H\vert}=(a^{\vert H\vert})^{\frac{\vert G\vert}{\vert H\vert}}=e[/math].
Следствие:(теорема Ферма) Рассматривая в качестве [math]G[/math] группу [math]\mathbb{Z}_p[/math], получаем при [math]a\lt p[/math]:
[math]a^{\vert \mathbb{Z}_p\vert}=a^{p-1}\equiv 1\mod p \Leftrightarrow a^p\equiv a\mod p[/math]
Ссылки
Доказательство