Вопросы к консультации 11.06.2011 — различия между версиями
Smolcoder (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 7: | Строка 7: | ||
# 16. Достаточное условие разложимости функции в ряд Тейлора - не был обнаружен в конспектах. <tex>C^\infty</tex> функции не обязательно разложимы (он давал контрпример), а достаточное условие - это разве что <tex>r_n(x) \rightarrow 0</tex> при <tex>n \rightarrow \infty</tex>. Как этот факт растянуть на целый вопрос - не понятно. | # 16. Достаточное условие разложимости функции в ряд Тейлора - не был обнаружен в конспектах. <tex>C^\infty</tex> функции не обязательно разложимы (он давал контрпример), а достаточное условие - это разве что <tex>r_n(x) \rightarrow 0</tex> при <tex>n \rightarrow \infty</tex>. Как этот факт растянуть на целый вопрос - не понятно. | ||
[[Категория: Математический анализ 1 курс]] | [[Категория: Математический анализ 1 курс]] | ||
+ | # 40. Что за НиД ?? |
Текущая версия на 19:35, 4 сентября 2022
NB При написании вопросов не пишите "тут все просто". Если просто - нечего задавать вопрос.
- 7. Признак типа Абеля-Дирихле равномерной сходимости функционального ряда. - не было на лекциях.
- 19. Биномиальный ряд Ньютона. - там используется форма остатка по Коши, которую он не давал в прошлом семестре. Следует уточнить.
- 23, 29. Унитарные пространства. - на лекциях не давал.
- 54. Формула повторного интегрирования в общем случае. (может, та же формула, только для многомерных интегралов? Доказывать там нечего, но написать просто стоит.)
- 32. Критерий компактности в - вероятно, тот же, что и в любом полном метрическом пространстве, но, возможно, есть какие-то частные случаи.
- 16. Достаточное условие разложимости функции в ряд Тейлора - не был обнаружен в конспектах. функции не обязательно разложимы (он давал контрпример), а достаточное условие - это разве что при . Как этот факт растянуть на целый вопрос - не понятно.
- 40. Что за НиД ??