Формулировки теорем 2 семестр — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показаны 2 промежуточные версии 2 участников)
(нет различий)

Текущая версия на 19:19, 4 сентября 2022

Вопрос №1. Суммирование расходящихся рядов методом средних арифметических

Определение:
Ряд [math]\sum\limits_{n = 0}^\infty a_n[/math] имеет сумму [math]S[/math] по методу средних арифметических (обозначают аббревиатурой с.а.), если [math]S = \lim\limits_{n \rightarrow \infty} \frac 1{n + 1} \sum\limits_{k = 0}^n S_k[/math].

Вопрос №2. Суммирование расходящихся рядов методом Абеля

Определение:
Пусть дан ряд [math]\sum\limits_{n = 0}^{\infty}a_n[/math] и [math] \forall t \in (0; 1) : \sum\limits_{n = 0}^{\infty}a_nt^n = f(t)[/math] (в классическом смысле). Тогда этот ряд имеет сумму [math] S [/math] по методу Абеля, если [math] S = \lim\limits_{t \to 1 - 0} f(t)[/math].

Вопрос №3. Теорема Фробениуса

Теорема (Фробениус):
[math] \sum\limits_{n = 0}^\infty a_n = S [/math] (с.а) [math] \Rightarrow [/math] [math] \sum\limits_{n = 0}^\infty a_n = S [/math] (А).

Вопрос №4. Тауберова теорема Харди

Теорема (Харди):
[math]\sum\limits_{k = 0}^\infty a_k = S[/math](с.а.) Тогда, если существует такое [math] M \gt 0 [/math], что [math] \forall n \in \mathbb N: \sum\limits_{k = n + 1}^\infty a_k^2 \leq \frac{M}n [/math], то [math] \sum\limits_{k=0}^\infty a_k = S[/math].