Теорема Голдвассера, Сипсера — различия между версиями
(→План доказательства) |
(→Доказательство) |
||
Строка 9: | Строка 9: | ||
==Доказательство== | ==Доказательство== | ||
+ | Рассмотрим множество вероятностных лент <tex>R</tex> и его подмножество <tex>S \subset R</tex> - множество лент, на которых осуществляется допуск. В соответствии с протоколом, <tex>x \in L \Rightarrow P(V(x) = [x \in L]) \ge \frac{2}{3}</tex>, то есть если слово принадлежит языку, то <tex>V</tex> должен вывести <tex>YES</tex> с достаточно большой вероятностью, а если <tex>x \notin L</tex>, то <tex>P(V(x) = [x \in L]) < \frac{1}{3}</tex>, то есть если слово не принадлежит языку, то <tex>V</tex> разрешено ошибиться, но с достаточно малой вероятностью. Перефразируем эти условия так: | ||
+ | * <tex>x \in L \Rightarrow |s|>2K </tex>, т.е. если слово принадлежит языку, то множество вероятностных лент, на которых слово будет допущено должно быть достаточно большим; | ||
+ | * <tex>x \notin L \Rightarrow |s|<K</tex>, т.е. если слово не принадлежит языку, то множество вероятностных лент, на которых слово все же будет допущено, должно быть достаточно малым. | ||
+ | |||
Итак, есть множество <tex>S \subset 2^{m}</tex>, и мы хотим доказать, что либо <tex>|S| > 2K</tex>, либо <tex>|S| < K</tex>. | Итак, есть множество <tex>S \subset 2^{m}</tex>, и мы хотим доказать, что либо <tex>|S| > 2K</tex>, либо <tex>|S| < K</tex>. | ||
Выберем <tex>k</tex> так, чтобы <tex>2^{k-2} \le 2K \le 2^{k-1}</tex>. | Выберем <tex>k</tex> так, чтобы <tex>2^{k-2} \le 2K \le 2^{k-1}</tex>. |
Версия 12:33, 18 мая 2010
Определение
Протокол Артура-Мерлина - интерактивный протокол доказательства, в котором (prover, Merlin) видит вероятностную ленту (verifier, Arthur)(т.н. public coins)
Определение
- класс языков, распознаваемых с помощью интерактивного протокола доказательства Артура-Мерлина, причем количество запросов к не превышает .
Формулировка теоремы
Доказательство
Рассмотрим множество вероятностных лент
и его подмножество - множество лент, на которых осуществляется допуск. В соответствии с протоколом, , то есть если слово принадлежит языку, то должен вывести с достаточно большой вероятностью, а если , то , то есть если слово не принадлежит языку, то разрешено ошибиться, но с достаточно малой вероятностью. Перефразируем эти условия так:- , т.е. если слово принадлежит языку, то множество вероятностных лент, на которых слово будет допущено должно быть достаточно большим;
- , т.е. если слово не принадлежит языку, то множество вероятностных лент, на которых слово все же будет допущено, должно быть достаточно малым.
Итак, есть множество теореме) и . Далее, отправим запрос на получение , такого, что , и проверим, верно ли в действительности, что полученный . Пусть .
, и мы хотим доказать, что либо , либо . Выберем так, чтобы . Возьмем ( существует согласно соответствующей- если , то успех .
- если , и , то поступим следующим образом. Мы хотим, чтобы выполнялось: . Рассмотрим .
Заметим, что
, а . Следовательно,