Получение объекта по номеру — различия между версиями
Antonkov (обсуждение | вклад) (→Общий алгоритм получения комбинаторного объекта по номеру в лексикографическом порядке) |
|||
Строка 9: | Строка 9: | ||
перейти к выбору следующего элемента | перейти к выбору следующего элемента | ||
+ | Рассмотрим почему данный алгоритм корректен. Условимся, что нумерация обектов начинается с 1. Докажем, что | ||
+ | если первые n-элементов выбраны верно, то n+1 мы также выберем верно. | ||
+ | База: n=0 - очевидно | ||
+ | Переход: На n+1-ом шаге мы найдем, какой элемент должен быть n+1-ым для объекта с номером numOfOject, среди всех комбинаторных обектов, которые емеют префикс длины n - как у нас. Рассмотрим искомый объект. Очевидно, что все объекты, которые начинаются с меньшего чем у нас | ||
+ | символа в лексикографическом порядке на n+1-ом месте будут идти раньше нас. А те у которым больше будут идти после нас. | ||
+ | на | ||
== Перестановки == | == Перестановки == | ||
Рассмотрим алгоритм получения i-ой в лексикографическом порядке перестановки размера n. | Рассмотрим алгоритм получения i-ой в лексикографическом порядке перестановки размера n. |
Версия 01:09, 29 октября 2011
Содержание
Общий алгоритм получения комбинаторного объекта по номеру в лексикографическом порядке
for i = 1 to n do //n - количество элементов в комбинаторном объекте for j = 1 to n do //перебираем елементы в лексикографическом порядке if можем поставить на это место then if numOfObject > (количество комбинаторных обектов с данным префиксом) then numObject -= (количество комбинаторных обектов с данным префиксом) else then ans[i]=j //поставим на это место текущий элемент, т.к. еще не все объекты с этим префиксом - меньше перейти к выбору следующего элемента
Рассмотрим почему данный алгоритм корректен. Условимся, что нумерация обектов начинается с 1. Докажем, что
если первые n-элементов выбраны верно, то n+1 мы также выберем верно.
База: n=0 - очевидно Переход: На n+1-ом шаге мы найдем, какой элемент должен быть n+1-ым для объекта с номером numOfOject, среди всех комбинаторных обектов, которые емеют префикс длины n - как у нас. Рассмотрим искомый объект. Очевидно, что все объекты, которые начинаются с меньшего чем у нас
символа в лексикографическом порядке на n+1-ом месте будут идти раньше нас. А те у которым больше будут идти после нас. на
Перестановки
Рассмотрим алгоритм получения i-ой в лексикографическом порядке перестановки размера n.
- количество перестановок размера n permutation[n] - искомая перестановка was[n] - использовали ли мы уже эту цифру в перестановке for i = 1 to n do //n - количество цифр в перестановке alreadyWas = (numOfPermutation-1) div // сколько цифр уже полностью заняты перестановками с меньшим номером numOfPermutation = ((numOfPermutation-1) mod ) + 1 //сейчас мы должны поставить ту цифру, которая еще полностью не занята, т.е. alreadyWas+1, которая еще не занята for j = 1 to n do if was[j] = false then cntFree++ if cntFree = alreadyWas+1 then ans[i] = j was[j] = true
Данный алгоритм работает за
. Мы можем посчитать за . Асимптотику можно улучшить до , если использовать структуры данных, которые позволяют искать i-ый элемент множества и удалять элемент множества за . Например декартово дерево по неявному ключу.Сочетания
Рассмотрим алгоритм получения i-го в лексикографическом порядке размещения
- количество размещений из n по k placement[n] - искомое размещение was[n] - использовали ли мы уже эту цифру в размещении for i = 1 to k do //k - количество цифр в размещении alreadyWas = (numOfPlacement-1) div // сколько цифр уже полностью заняты размещениями с меньшим номером numOfPlacement = ((numOfPlacement-1) mod ) + 1 //сейчас мы должны поставить ту цифру, которая еще полностью не занята, т.е. alreadyWas+1, которая еще не занята for j = 1 to n do if was[j] = false then cntFree++ if cntFree = alreadyWas+1 then ans[i] = j was[j] = true
Сложность алгоритма
.