Алгоритм Джонсона — различия между версиями
(→Описание) |
(→Псевдокод) |
||
Строка 67: | Строка 67: | ||
Строится граф <tex>G' = (V',\;E')</tex>, где <tex>V' = V \cup \{s\}</tex>, | Строится граф <tex>G' = (V',\;E')</tex>, где <tex>V' = V \cup \{s\}</tex>, | ||
− | для некоторой новой вершины <tex>s \not\in V</tex>, а <tex>E' = E \cup \{(s,\;v): v \in V\}</tex> | + | для некоторой новой вершины <tex>s \not\in V</tex>, а <tex>E' = E \cup \{(s,\;v): \omega(s, v) = 0,\ v \in V \}</tex> |
'''if''' Bellman_Ford<tex>(G',\;\omega,\;s)</tex> == FALSE | '''if''' Bellman_Ford<tex>(G',\;\omega,\;s)</tex> == FALSE | ||
'''then''' out << «Входной граф содержит цикл с отрицательным весом» | '''then''' out << «Входной граф содержит цикл с отрицательным весом» | ||
Строка 81: | Строка 81: | ||
'''for''' для каждой вершины <tex>v \in V</tex> | '''for''' для каждой вершины <tex>v \in V</tex> | ||
'''do''' <tex>d_{uv} \leftarrow \delta_\varphi(u,\;v) + \varphi(v) - \varphi(u)</tex> | '''do''' <tex>d_{uv} \leftarrow \delta_\varphi(u,\;v) + \varphi(v) - \varphi(u)</tex> | ||
− | '''return''' | + | '''return''' d |
Итого, в начале алгоритм Форда-Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл. | Итого, в начале алгоритм Форда-Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл. |
Версия 20:42, 3 ноября 2011
Алгоритм Джонсона находит кратчайшие пути между всеми парами вершин взвешенного ориентированного графа с положительными или отрицательными ребрами, но не имеющем отрицательных циклов.
Содержание
Алгоритм
Описание
Алгоритм Джонсона позволяет найти кратчайшие пути между всеми парами вершин в течение времени
. Для разреженных графов этот алгоритм ведет себя асимптотически быстрее алгоритма Флойда. Этот алгоритм либо возвращает матрицу кратчайших расстояний между всеми парами вершин, либо сообщение о том, что в графе существует цикл отрицательной длины.В этом алгоритме используется метод изменения веса (англ. reweighting). Суть его заключается в том, что для заданного графа
строится новая весовая функция , неотрицательная для всех ребер графа и сохраняющая кратчайшие пути. Такая весовая функция строится при помощи так называемой потенциальной функции.
Определение: |
Пусть | - произвольное отображение из множества вершин в вещественные числа. Тогда новой весовой функцией будет .
Такая потенциальная функция строится при помощи добавлении фиктивной вершины в и запуском алгоритма Форда-Беллмана из нее. На этом же этапе мы сможем обнаружить наличие отрицательного цикла в графе.
Теперь, когда мы знаем, что веса всех ребер неотрицательны, и кратчайшие пути сохранятся, можно запустить алгоритм Дейкстры из каждой вершины и таким образом найти кратчайшие расстояния между всеми парами вершин.
Сохранение кратчайших путей
Утверждается, что если какой-то путь
был кратчайшим относительно весовой функции , то он будет кратчайшим и относительно новой весовой функции .Лемма: |
Пусть и Тогда |
Доказательство: |
|
Теорема о существовании потенциальной функции
Теорема: |
В графе нет отрицательных циклов существует потенциальная функция |
Доказательство: |
: - цикл в графе : Добавим вершину в граф, соединим её со всеми вершинами графа ребрами весом .
|
Псевдокод
Алгоритм Джонсона
Строится граф, где , для некоторой новой вершины , а if Bellman_Ford == FALSE then out << «Входной граф содержит цикл с отрицательным весом» else for для каждой do присвоить величине значение , вычисленное алгоритмом Беллмана — Форда for для каждого ребра do for для каждой вершины do вычисление с помощью алгоритма Дейкстры величин для всех вершин for для каждой вершины do return d
Итого, в начале алгоритм Форда-Беллмана либо строит потенциальную функцию такую, что после перевзвешивания все веса ребер будут неотрицательны, либо выдает сообщение о том, что в графе присутствует отрицательный цикл.
Затем из каждой вершины запускается алгоритм Дейкстры для составления искомой матрицы. Так как все веса ребер теперь неотрицательны, алгоритм Дейкстры будет работать корректно. А поскольку перевзвешивание таково, что кратчайшие пути относительно обеих весовых функций совпадают, алгоритм Джонсона в итоге корректно найдет все кратчайшие пути между всеми парами вершин.
Сложность
Алгоритм Джонсона работает за алгоритма Дейкстры. Если в алгоритме Дейкстры неубывающая очередь с приоритетами реализована в виде фибоначчиевой кучи, то время работы алгоритма Джонсона равно .
, где - время работыСм. также
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ.[1] — 2-е изд. — М.: Издательский дом «Вильямс», 2007. — С. 1296.