Основные определения теории графов — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Вставил упущенное слово)
Строка 21: Строка 21:
  
 
{{Определение
 
{{Определение
 +
|id = def1
 
|definition =
 
|definition =
 
'''Ориентированным графом''' <tex>G</tex> называется четверка <tex>G = (V, E, beg, end)</tex> , где <tex>beg, end : E \rightarrow V </tex>, а <tex>V</tex> и <tex>E</tex> {{---}} некоторые абстрактные множества.
 
'''Ориентированным графом''' <tex>G</tex> называется четверка <tex>G = (V, E, beg, end)</tex> , где <tex>beg, end : E \rightarrow V </tex>, а <tex>V</tex> и <tex>E</tex> {{---}} некоторые абстрактные множества.

Версия 20:16, 7 января 2012

Ориентированные графы

Определение:
Ориентированным графом (directed graph) [math]G[/math] называется пара [math]G = (V, E)[/math], где [math]V[/math] — конечное множество вершин, а [math] E \subset V \times V [/math] — множество рёбер. Ребром (edge, дугой(arc), линией(line)) ориентированного графа называют упорядоченную пару вершин [math] (v, u) \in E [/math].


В графе ребро, концы которого совпадают, то есть [math]e=(v,v)[/math], называется петлей. Мультиграф с петлями принято называть псевдографом.

Если имеется ребро [math] (v, u) \in E [/math], то говорят:

  • [math] v [/math]предок [math] u [/math].
  • [math] u [/math] и [math] v [/math]смежные
  • Вершина [math] u [/math] инцидентна ребру [math] (v, u) [/math], вершина [math] v [/math] инцидентна ребру [math] (v, u) [/math]

Заметим, что инцидентность — понятие, используемое только в отношении ребра и вершины. Две вершины или два ребра не могут быть инцидентны.

Граф с [math] p [/math] вершинами и [math] q [/math] ребрами называют [math] (p, q) [/math] - графом. [math] (1, 0) [/math]-граф называют тривиальным.

Заметим, что по определению ориентированного графа, данному выше, любые две вершины [math]u,~v[/math] нельзя соединить более чем одним ребром [math](u, v)[/math]. Поэтому часто используют другое определение.


Определение:
Ориентированным графом [math]G[/math] называется четверка [math]G = (V, E, beg, end)[/math] , где [math]beg, end : E \rightarrow V [/math], а [math]V[/math] и [math]E[/math] — некоторые абстрактные множества.

Иногда граф, построенный таким образом называют мультиграфом. В мультиграфе не допускаются петли, но пары вершин допускается соединять более чем одним ребром. Такие ребра называются кратными (иначе — параллельные).

Красным выделено кратное ребро (6, 2)
Зеленым обозначена петля (6, 6)
а) Мультиграф
б) Псевдограф


Так же для ориентированных графов определяют полустепень исхода вершины [math]deg^-v_i = |\{e~|beg~e = v\}|[/math] и полустепень захода вершины [math]deg^+v_i = |\{e~|end~e = v\}|[/math].

Так как у каждого ребра ровно одно начало и ровно один конец выполнено следующее равенство:

[math]\sum\limits_{v\in V(G)}deg^-v_i = \sum\limits_{v\in V(G)}deg^+v_i = |E|[/math].


Определение:
Путём(маршрутом) в графе называется последовательность вида [math]v_0 e_1 v_1 ... e_k v_k[/math], где [math]e_i \in E,~e_i = (v_{i-1}, v_i)[/math]; [math]k[/math]длина пути.


Определение:
Циклическим путём называется путь, в котором [math]v_0 = v_k[/math].


Определение:
Цикл - это класс эквивалентности циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если [math] \exists j : \forall i \Rightarrow e_{(i \mod k)} = e'_{(i + j) \mod k}[/math]; где [math]e[/math] и [math]e'[/math] — это две последовательности ребер в циклическом пути.


Неориентированные графы

Определение:
Неориентированным графом (undirected graph) [math]G[/math] называется пара [math]G = (V, E)[/math], где [math]V[/math] — конечное множество вершин, а [math] E \subset V \times V(uv \sim vu~\backslash~\{uu~|~u \in V\})[/math] — множество рёбер. Ребром в неориентированном графе называют неупорядоченную пару вершин [math] (v, u) \in E [/math].
Неориентированный граф

Иное определение:


Определение:
Неориентированным графом [math]G = (V, E, ends)[/math] , где [math]ends : E \rightarrow V \times V[/math], а [math]V[/math] и [math]E[/math] — некоторые абстрактные множества.


Две вершины называются смежными если между ними есть ребро.

Степенью вершины [math]deg~v_i[/math] в неориентированном графе называют число ребер, инцидентных [math]v_i[/math]. Будем считать, что петли добавляют к степени вершины [math]2[/math].


Определение:
Циклическим путём в неориентированном графе называется путь, в котором [math]v_0 = v_k[/math], а так же [math] e_i \ne e_{(i+1) \mod k}[/math].


Остальные определения в неориентированном графе совпадают с аналогичными определениями в ориентированном графе.

См. также

Литература

  • Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
  • Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
  • Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)