Существенно неоднозначные языки — различия между версиями
(→Существенно неоднозначные языки) |
(→Существенно неоднозначные языки) |
||
Строка 33: | Строка 33: | ||
[[Файл:tree3.png]] | [[Файл:tree3.png]] | ||
− | Очевидно, что поддеревья, соответствующие <tex> | + | Очевидно, что поддеревья, соответствующие <tex>A</tex> и <tex>B</tex> - разные деревья и одно не является потомком другого. |
[[Файл:tree5.png]] | [[Файл:tree5.png]] |
Версия 19:39, 22 ноября 2011
Неоднозначные грамматики
Неоднозначной грамматикой называется грамматика, которая может породить некоторое слово более чем одним способом (то есть для строки есть более одного дерева разбора).
Пример:
Рассмотрим грамматику
и выводимое слово . Его можно вывести двумя способами:
Эта грамматика неоднозначна.
Существенно неоднозначные языки
Язык называется существенно неоднозначным, если он может быть порождён только неоднозначными грамматиками.
Пример такого языка:
, где либо , либоДокажем, что для любой грамматики
имеет хотя бы 2 дерева разбора в грамматике .Возьмем k и рассмотрим слово
.Пометим первые k нулей, по лемме Огдена данное слово можно разбить на 5 частей: .
Понятно, что
состоит полностью из нулей, а состоит полностью из единиц, а также длины и равны, так как иначе при накачке мы можем получить слово, не принадлежащее языку.Пусть
, тогда возьмём слово . По лемме Огдена слово принадлежит языку, а также существует нетерминал такой, что с помощью него можно породить слово .Теперь рассмотрим слово
, в котором отмечены все двойки. Аналогичными рассуждениями мы получаем, что слово принадлежит языку, а также существует нетерминал такой, что с помощью него можно породить слово .Очевидно, что поддеревья, соответствующие
и - разные деревья и одно не является потомком другого.Пусть в этих двух случай дерево разбора было одно и тоже, то оно порождает слово вида
, которое не принадлежит языку.В результате мы имеем 2 дерева разбора для одного слова. Значит язык существенно не однозначен.