Устранение левой рекурсии — различия между версиями
| Строка 52: | Строка 52: | ||
Приведем алгоритм, позволяющий для к.с. грамматики ''без <tex> \varepsilon </tex>-правил'' построить эквивалентную ей к.с. грамматику (без <tex> \varepsilon </tex>-правил), не содержащую левой рекурсии. | Приведем алгоритм, позволяющий для к.с. грамматики ''без <tex> \varepsilon </tex>-правил'' построить эквивалентную ей к.с. грамматику (без <tex> \varepsilon </tex>-правил), не содержащую левой рекурсии. | ||
| + | |||
Для произвольной грамматики <tex>\Gamma</tex> левую рекурсию можно устранить следующим образом: | Для произвольной грамматики <tex>\Gamma</tex> левую рекурсию можно устранить следующим образом: | ||
#Воспользуемся [[Удаление_eps-правил_из_грамматики | алгоритмом удаления <tex> \varepsilon </tex>-правил]]. Получим грамматику без <tex> \varepsilon </tex>-правил для языка <tex>L(\Gamma) \setminus \lbrace \epsilon \rbrace</tex> | #Воспользуемся [[Удаление_eps-правил_из_грамматики | алгоритмом удаления <tex> \varepsilon </tex>-правил]]. Получим грамматику без <tex> \varepsilon </tex>-правил для языка <tex>L(\Gamma) \setminus \lbrace \epsilon \rbrace</tex> | ||
Версия 05:36, 27 ноября 2011
| Определение: |
| Говорят, что контекстно-свободная(к.с.) грамматика содержит непосредственную левую рекурсию, если она содержит правило вида . |
| Определение: |
| Говорят, что к.с. грамматика содержит левую рекурсию, если в ней существует вывод вида . |
Содержание
Устранение непосредственной левой рекурсии
Опишем процедуру, устраняющую все правила вида для фиксированного нетерминала .
- Запишем все правила вывода из в виде
, где
- - непустая последовательность терминалов и нетерминалов ()
- - непустая последовательность терминалов и нетерминалов, не начинающаяся с .
- Заменим правила вывода из на:
- Создадим новый нетерминал
Устранение произвольной левой рекурсии
Пусть - множество всех нетерминалов
for i = 1 to n {
for j = 1 to i – 1 {
рассмотреть все правила вывода из :
заменить каждое правило на
}
устранить непосредственную левую рекурсию для
}
Инвариант: после итераций внутреннего цикла для
- для правые части правил вывода из не начинаются с
- правые части правил вывода из не начинаются с
- правые части правил вывода не начинаются с добавленных алгоритмом нетерминалов
- грамматика не содержит ε-правил
(проверяется индукцией по парам )
Таким образом, после применения алгоритма все правила вывода имеют вид
- , где - терминал, - произвольный нетерминал
- , где , - нетерминалы из исходной грамматики
- , где - новый нетерминал, - нетерминал из исходной грамматики
Если теперь перенумеровать нетерминалы, сохранив порядок для старых и присвоив всем новым меньшие номера, то все правила будут иметь вид
- , где - терминал
- , где
Алгоритм устранения левой рекурсии
Приведем алгоритм, позволяющий для к.с. грамматики без -правил построить эквивалентную ей к.с. грамматику (без -правил), не содержащую левой рекурсии.
Для произвольной грамматики левую рекурсию можно устранить следующим образом:
- Воспользуемся алгоритмом удаления -правил. Получим грамматику без -правил для языка
- Воспользуемся алгоритмом устранения произвольной левой рекурсии
- Если присутствовал в языке исходной грамматики, добавим новый начальный символ и правила
Литература
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)