Определение измеримой функции — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(прочитать, исправить, структурировать)
 
(вроде добавил все, что пропущено)
Строка 3: Строка 3:
 
{{TODO|t=ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ}}
 
{{TODO|t=ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ}}
  
{{TODO|t=Achtung! Тут немного пропущено}}
+
<tex> (X, \mathcal A, \mu) </tex>, <tex> \mu </tex> — <tex> \sigma </tex>-конечная, полная:
 +
 
 +
<tex> X = \bigcup\limits_p X_p : \mu X_p < + \infty </tex>
 +
 
 +
<tex> \mu B = 0 , A \subset B \Rightarrow A \in \mathcal A, \mu A = 0 </tex>
 +
 
 +
<tex> E \subset X, f: E \rightarrow \mathbb R </tex>, <tex> E (f </tex> обладает свойством <tex> P )</tex> — совокупность точек из <tex>E</tex>, для которых это свойство верно.
 +
 
 +
<tex> a \in \mathbb R </tex>, <tex> E(f < a), E(f \le a), E(f > a), E(f \ge a) </tex> — множества Лебега функции <tex> f </tex>.
 +
 
 +
{{Определение
 +
|definition=
 +
<tex> f : E \rightarrow \mathbb R </tex> называется измеримой по Лебегу, если для любого <tex> a \in \mathbb R </tex> множества Лебега всех четырех типов измеримы(то есть принадлежат сигма-алгебре)
 +
}}
 +
 
 +
{{Утверждение
 +
|about=
 +
Измеримость по Лебегу
 +
|statement=
 +
Функция измерима по Лебегу на <tex> E </tex> <tex> \Leftrightarrow </tex> для любого <tex> a </tex> измеримо её множество Лебега любого фиксированного типа.
 +
|proof=
 +
Пусть <tex> E(f < a) </tex> — измеримо для любого <tex> a </tex>. Установим измеримость остальных:
 +
# <tex> E(f \le a) = \bigcap\limits_{n = 1}^{\infty} E(f < a + \frac1n) </tex> — тоже измеримо, как счётное пересечение измеримых множеств.
 +
# <tex> E(f > a) = \overline{E(f \le a)} </tex> — тоже измеримо.
 +
# <tex> E(f \ge a) = \bigcap\limits_{n = 1}^{\infty} E(f > a - \frac1n) </tex> — аналогично, измеримо.
 +
}}
  
 
... Используя ту же технику,  
 
... Используя ту же технику,  
Строка 23: Строка 48:
 
Всё это распространяется на <tex>E = \bigcup\limits_p E_p</tex>, <tex>E_p \in \mathcal{A}</tex>
 
Всё это распространяется на <tex>E = \bigcup\limits_p E_p</tex>, <tex>E_p \in \mathcal{A}</tex>
  
Аналогично измерима на <tex>E</tex>, <tex>f : E \to \mathcal{R}</tex>, <tex>f(x) = a_p, x\in E_p</tex>.
+
Аналогично измерима на <tex>E</tex>, <tex>f : E \to \mathbb R </tex>, <tex>f(x) = a_p, x\in E_p</tex>.
  
 
{{Утверждение
 
{{Утверждение
Строка 44: Строка 69:
 
{{Теорема
 
{{Теорема
 
|statement=Пусть <tex>f</tex> и <tex>g</tex> измеримы на <tex>E</tex>. Тогда
 
|statement=Пусть <tex>f</tex> и <tex>g</tex> измеримы на <tex>E</tex>. Тогда
1 <tex>|f|</tex> {{---}} измерима
+
1) <tex>|f|</tex> {{---}} измерима <br>
1.5 <tex>af</tex> {{---}} измеримо (<tex>a \in \mathbb{R}</tex>)
+
1.5) <tex>af</tex> {{---}} измеримо (<tex>a \in \mathbb{R}</tex>) <br>
2 <tex>f^2</tex> {{---}} измеримо
+
2) <tex>f^2</tex> {{---}} измеримо <br>
4 <tex>fg</tex> {{---}} измеримо
+
3) <tex>f + g</tex> {{---}} измеримо <br>
3 <tex>f + g</tex> {{---}} измеримо
+
4) <tex>f \cdot g</tex> {{---}} измеримо <br>
|proof=Пункт 4 вытекает из прошлых: <tex>fg = \frac{(f+g)^2 - (f-g)^2}{4}</tex>
+
|proof=
 
+
1 и 2) доказываются одинаково. Например,  
1 и 2 доказываются одинаково. Например,  
 
  
 
<tex>E(f^2<a)</tex>. При <tex>a\geq 0</tex> оно может быть непустым. Но это равносильно <tex>E(-\sqrt{a} < k < \sqrt{a}) = E(-\sqrt{a} < x) \cap E(x<\sqrt{a})</tex>
 
<tex>E(f^2<a)</tex>. При <tex>a\geq 0</tex> оно может быть непустым. Но это равносильно <tex>E(-\sqrt{a} < k < \sqrt{a}) = E(-\sqrt{a} < x) \cap E(x<\sqrt{a})</tex>
Строка 57: Строка 81:
 
Это пересечение двух измеримых множеств Лебега <tex>\Rightarrow</tex> измеримо.
 
Это пересечение двух измеримых множеств Лебега <tex>\Rightarrow</tex> измеримо.
  
Пункт 3 доказывать чуть сложнее
+
3) Доказывается чуть сложнее
  
 
<tex>f(x) + g(x) > a \iff g(x) > a - f(x)</tex>
 
<tex>f(x) + g(x) > a \iff g(x) > a - f(x)</tex>
Строка 66: Строка 90:
  
 
Справа измеримое множество Лебега функций <tex>f</tex> и <tex>g</tex>. Операций счётно. Значит, <tex>f+g</tex> тоже измеримо
 
Справа измеримое множество Лебега функций <tex>f</tex> и <tex>g</tex>. Операций счётно. Значит, <tex>f+g</tex> тоже измеримо
 +
4) Вытекает из прошлых: <tex>f \cdot g = \frac{(f+g)^2 - (f-g)^2}{4}</tex>
 
}}
 
}}

Версия 02:46, 1 января 2012

Эта статья находится в разработке!


TODO: ВАКАНСИЯ: ВНИМАТЕЛЬНЫЙ ЧИТАТЕЛЬ. НУЖЕН, ЧТОБЫ ОЗНАКОМИТЬСЯ С ЭТИМ ТЕКСТОМ И ИСПРАВИТЬ КОСЯКИ

[math] (X, \mathcal A, \mu) [/math], [math] \mu [/math][math] \sigma [/math]-конечная, полная:

[math] X = \bigcup\limits_p X_p : \mu X_p \lt + \infty [/math]

[math] \mu B = 0 , A \subset B \Rightarrow A \in \mathcal A, \mu A = 0 [/math]

[math] E \subset X, f: E \rightarrow \mathbb R [/math], [math] E (f [/math] обладает свойством [math] P )[/math] — совокупность точек из [math]E[/math], для которых это свойство верно.

[math] a \in \mathbb R [/math], [math] E(f \lt a), E(f \le a), E(f \gt a), E(f \ge a) [/math] — множества Лебега функции [math] f [/math].


Определение:
[math] f : E \rightarrow \mathbb R [/math] называется измеримой по Лебегу, если для любого [math] a \in \mathbb R [/math] множества Лебега всех четырех типов измеримы(то есть принадлежат сигма-алгебре)


Утверждение (Измеримость по Лебегу):
Функция измерима по Лебегу на [math] E [/math] [math] \Leftrightarrow [/math] для любого [math] a [/math] измеримо её множество Лебега любого фиксированного типа.
[math]\triangleright[/math]

Пусть [math] E(f \lt a) [/math] — измеримо для любого [math] a [/math]. Установим измеримость остальных:

  1. [math] E(f \le a) = \bigcap\limits_{n = 1}^{\infty} E(f \lt a + \frac1n) [/math] — тоже измеримо, как счётное пересечение измеримых множеств.
  2. [math] E(f \gt a) = \overline{E(f \le a)} [/math] — тоже измеримо.
  3. [math] E(f \ge a) = \bigcap\limits_{n = 1}^{\infty} E(f \gt a - \frac1n) [/math] — аналогично, измеримо.
[math]\triangleleft[/math]

... Используя ту же технику, [math]f[/math] — измерима на [math]E[/math] [math]\Rightarrow[/math] [math]E[/math] — тоже измеримо, [math]E = \bigcup\limits_{n=1}^\infty E(f \lt n)[/math]

Приведём примеры измеримых функций: [math]f(x) = C[/math] на [math]E[/math].

[math]E(f\lt a) = \left\{ \begin{aligned} E &, C \lt a \\ \varnothing &, C \geq a \end{aligned} \right. [/math]

Поэтому, считая [math]E[/math] измеримым, получаем, что постоянная функция на нём измерима.

Всё это распространяется на [math]E = \bigcup\limits_p E_p[/math], [math]E_p \in \mathcal{A}[/math]

Аналогично измерима на [math]E[/math], [math]f : E \to \mathbb R [/math], [math]f(x) = a_p, x\in E_p[/math].

Утверждение:
Пусть [math]F \subset \mathbb{R}^n[/math] — замкнутое множество, в [math]\mathbb{R}^n[/math] есть мера [math]\lambda[/math]. Тогда непрерывная функция [math]f : F \to \mathbb{R}[/math] — измерима.
[math]\triangleright[/math]

Установим измеримость [math]F(f\leq a)[/math].

Проверим, что оно замкнуто [math]\Rightarrow[/math] измеримо.

[math]\bar x_j \in F(f\leq a)[/math], [math]f(\bar x_j) \leq a[/math], [math]\bar x_j \to \bar x[/math], [math]\bar x_j \in[/math] замкнутое [math]F[/math]. Значит, предел тоже в [math]F[/math]. Значит, по непрерывности, [math]f(\bar x_j) \to f(\bar x)[/math]

Значит, [math]f(\bar x)\leq a \Rightarrow \bar x \in F(f\leq a)[/math].

Множество содержит в себе пределы всех сходящихся подпоследовательностей [math]\Rightarrow[/math] замкнуто. Но замкнутые множества измеримы по Лебегу.
[math]\triangleleft[/math]

Вывод: класс непрерывных функций содержится в классе измеримых.

Следует обратить внимание, что столь простые рассуждения проходят по той причине, что мы не интересуемся тем, как устроены множества Лебега. Нас интересует только одно их свойство — принадлежность [math]\mathcal{A}[/math]. Природа этих множеств может быть крайне сложной.

Теорема:
Пусть [math]f[/math] и [math]g[/math] измеримы на [math]E[/math]. Тогда

1) [math]|f|[/math] — измерима
1.5) [math]af[/math] — измеримо ([math]a \in \mathbb{R}[/math])
2) [math]f^2[/math] — измеримо
3) [math]f + g[/math] — измеримо

4) [math]f \cdot g[/math] — измеримо
Доказательство:
[math]\triangleright[/math]

1 и 2) доказываются одинаково. Например,

[math]E(f^2\lt a)[/math]. При [math]a\geq 0[/math] оно может быть непустым. Но это равносильно [math]E(-\sqrt{a} \lt k \lt \sqrt{a}) = E(-\sqrt{a} \lt x) \cap E(x\lt \sqrt{a})[/math]

Это пересечение двух измеримых множеств Лебега [math]\Rightarrow[/math] измеримо.

3) Доказывается чуть сложнее

[math]f(x) + g(x) \gt a \iff g(x) \gt a - f(x)[/math]

Базируясь на том,что [math]\mathbb{Q}[/math] всюду плотно на оси, [math]\exists r \in \mathbb{Q} : g(x) \gt r \gt a - f(x)[/math]

Тогда [math]E(f + g\gt a) = \bigcup\limits_{r\in\mathbb{Q}}(E(g\gt r) \cap E(f \gt a - r))[/math]

Справа измеримое множество Лебега функций [math]f[/math] и [math]g[/math]. Операций счётно. Значит, [math]f+g[/math] тоже измеримо

4) Вытекает из прошлых: [math]f \cdot g = \frac{(f+g)^2 - (f-g)^2}{4}[/math]
[math]\triangleleft[/math]