Симуляция одним распределением другого — различия между версиями
Borisov (обсуждение | вклад) |
Borisov (обсуждение | вклад) |
||
Строка 30: | Строка 30: | ||
==Схема Уолкера== | ==Схема Уолкера== | ||
− | Если бы все исходы имели одинаковые вероятности, моделировать такое распределение было бы очень просто. В такой ситуации достаточно разделить отрезок $[0, 1]$ на $k$ | + | Если бы все исходы имели одинаковые вероятности, моделировать такое распределение было бы очень просто. В такой ситуации достаточно разделить отрезок $[0, 1]$ на $k$ одинаковых частей, соответствующих этим исходам, и определить, в какую часть отрезка попало значение случайного датчика $x$. А это выясняется очень просто: нужно взять целую часть произведения $k \cdot x$. Так |
− | часть отрезка попало значение случайного датчика $x$. А это выясняется очень просто: нужно взять целую часть произведения $k \cdot x$. Так | ||
что при исходах 0, 1, 2, 3 значению $x = 0.333$ соответствует исход 1, | что при исходах 0, 1, 2, 3 значению $x = 0.333$ соответствует исход 1, | ||
поскольку $4x = 1.332$. | поскольку $4x = 1.332$. | ||
− | Можно "подгонять" распределение под равномерное, передавая часть "вероятностной массы" от одних исходов другим. Если четыре исхода должны иметь вероятности, те же четыре исхода должны иметь вероятности, соответственно, $0.25$, $0.31$, $0.19$ и $0.25$, то исход $2$, получая, как все другие, долю 0.25 и нуждаясь в доле $0.19$, может быть своеобразным "донором" и отдать исходу $1$, нуждающемуся в доле $0.31$, свои лишние шесть сотых. Эта передача воплощается в следующих действиях при генерировании случайного исхода: берется случайное число, например можможно использовать непосредственно дробную часть числа $k \cdot x$, и если это число меньше чем $0.19 \cdot 4 = 0.76$, то результатом будет исход $2$, а если больше, то исход $1$ (здесь случай равенства несуществен, его можно приписать к любой альтернативе). Эта передача обеспечит нужное увеличение доли для исхода $1$ и уменьшение $-$ для исхода $2$. Исход $1$ служит здесь "реципиентом" для "донора", исхода $2$. | + | Можно "подгонять" распределение под равномерное, передавая часть "вероятностной массы" от одних исходов другим. Если четыре исхода должны иметь вероятности, те же четыре исхода должны иметь вероятности, соответственно, $0.25$, $0.31$, $0.19$ и $0.25$, то исход $2$, получая, как все другие, долю $0.25$ и нуждаясь в доле $0.19$, может быть своеобразным "донором" и отдать исходу $1$, нуждающемуся в доле $0.31$, свои лишние шесть сотых. Эта передача воплощается в следующих действиях при генерировании случайного исхода: берется случайное число, например можможно использовать непосредственно дробную часть числа $k \cdot x$, и если это число меньше чем $0.19 \cdot 4 = 0.76$, то результатом будет исход $2$, а если больше, то исход $1$ (здесь случай равенства несуществен, его можно приписать к любой альтернативе). Эта передача обеспечит нужное увеличение доли для исхода $1$ и уменьшение $-$ для исхода $2$. Исход $1$ служит здесь "реципиентом" для "донора", исхода $2$. |
Такую передачу "вероятностной массы" можно проводить в каждом диапазоне, причем если "владельцами диапазонов" удобно назначать различные исходы, то реципиентами разных диапазонов могут быть одни и те же исходы. Например, взяв ту же схему с четырьмя исходами, назначим реципиентом при исходе $0$ исход $3$ с долей $0.07$, при | Такую передачу "вероятностной массы" можно проводить в каждом диапазоне, причем если "владельцами диапазонов" удобно назначать различные исходы, то реципиентами разных диапазонов могут быть одни и те же исходы. Например, взяв ту же схему с четырьмя исходами, назначим реципиентом при исходе $0$ исход $3$ с долей $0.07$, при |
Версия 07:32, 18 декабря 2011
<wikitex>
Содержание
Распределение
Распределение — одно из основных понятий теории вероятностей и математической статистике. Распределение вероятностей какой-либо случайной величины задается в простейшем случае указанием возможных значений этой величины и соответствующих им вероятностей, в более сложных — т. н. функцией распределения или плотностью вероятности.
Примеры распределений
- Биномиальное распределение
- Нормальное распределение
- Равномерное распределение
Симуляция распределений
Для того, чтобы создать необходимое распределение вероятностей, достаточно иметь последовательность независимых случайных величин типа "честной монеты". Например, для создания схемы с двумя исходами $A_1$ и $A_2$:
можно из датчика случайных двоичных разрядов получить два двоичных разряда $\delta_1$ и $\delta_2$ и, например, при $\delta_1 = \delta_2 = 1$ выработать исход $A_2$, а в остальных случаях $A_1$. Аналогично для схемы с четырьмя исходами
можно получить четыре двоичных разряда $\delta_1$ $,$ $\delta_2$ $,$ $\delta_3$ $,$ $\delta_4$ и любым способом сопоставить трём из 16 возможных наборов исход $A_1$, одному $-$ $A_2$, восьми $-$ $A_3$, четырём $-$ $A_4$. Если же вероятности исходов не кратны $2^{-k}$, можно применить два различных варианта действий.
- Можно приблизить вероятности двоичными дробями (с любой точностью), далее работать с полученными приближёнными значениями
- Пусть все вероятности $n_i$ $-$ дроби со знаменателем $r$. Найдём $k$, для которого $r < 2^k$. Предложим схему с $k$ двоичными разрядами, в которой $r$ наборов объявляются "неудачными" и требуют повторного эксперимента (пока не встретится удачный). Чем выше доля полезных исходов равная $r2^{-k}$, тем схема будет эффективнее.
Количество случайных двоичных разрядов $\lambda$, которые необходимы для формирования случайного исхода, $-$ это случайная величина. Её математическое ожидание:
Можно сделать схему более экономной, используя свойство датчиков случайных чисел формировать не отдельные двоичные разряды, а целые наборы их, например в виде числа, равномерно распределённого в $[0, 1]$. Образуем по данному набору вероятностей $p_i$ накопленные суммы $s_i$: $s_0 = 0; s_i = s_{i-1} + p_i, i > 0$. Случайный исход будет вырабатываться так: по полученному из датчика случайному числу $\gamma$ определяется такой индекс $i$, для которого $s_{i-1} < \gamma \le s_i$. Найденное значение индекса $i$ и определяет исход $A_i$.
Индекс $i$ можно определять непосредственно просмотром $s_i$ подряд. Если $k$ велико, можно применять специальные приёмы ускоренного поиска, например, деление множества индексов примерно пополам.
Самую эффективную схему предложил в 1977 г. А. Уолкер.
Схема Уолкера
Если бы все исходы имели одинаковые вероятности, моделировать такое распределение было бы очень просто. В такой ситуации достаточно разделить отрезок $[0, 1]$ на $k$ одинаковых частей, соответствующих этим исходам, и определить, в какую часть отрезка попало значение случайного датчика $x$. А это выясняется очень просто: нужно взять целую часть произведения $k \cdot x$. Так что при исходах 0, 1, 2, 3 значению $x = 0.333$ соответствует исход 1, поскольку $4x = 1.332$.
Можно "подгонять" распределение под равномерное, передавая часть "вероятностной массы" от одних исходов другим. Если четыре исхода должны иметь вероятности, те же четыре исхода должны иметь вероятности, соответственно, $0.25$, $0.31$, $0.19$ и $0.25$, то исход $2$, получая, как все другие, долю $0.25$ и нуждаясь в доле $0.19$, может быть своеобразным "донором" и отдать исходу $1$, нуждающемуся в доле $0.31$, свои лишние шесть сотых. Эта передача воплощается в следующих действиях при генерировании случайного исхода: берется случайное число, например можможно использовать непосредственно дробную часть числа $k \cdot x$, и если это число меньше чем $0.19 \cdot 4 = 0.76$, то результатом будет исход $2$, а если больше, то исход $1$ (здесь случай равенства несуществен, его можно приписать к любой альтернативе). Эта передача обеспечит нужное увеличение доли для исхода $1$ и уменьшение $-$ для исхода $2$. Исход $1$ служит здесь "реципиентом" для "донора", исхода $2$.
Такую передачу "вероятностной массы" можно проводить в каждом диапазоне, причем если "владельцами диапазонов" удобно назначать различные исходы, то реципиентами разных диапазонов могут быть одни и те же исходы. Например, взяв ту же схему с четырьмя исходами, назначим реципиентом при исходе $0$ исход $3$ с долей $0.07$, при исходе $1$ $-$ исход $2$ с долей $0.11$, при исходе $2$ $-$ исход $3$ с долей $0.14$, наконец, при исходе $3$ $-$ исход $1$ с долей $0$. Подсчитаем окончательную вероятность получения каждого исхода:
$p_0 = 0.25- 0.07 = 0.18$,
$p_1 = 0.25 - 0.11 + 0 = 0.14$,
$p_2 = 0.25 - 0.14 + 0.11 = 0.22$,
$p_3 = 0.25 + 0.07 + 0.14 = 0.46$.
А создание по этой схеме очередного значения будет таким же простым, как и раньше: только в каждом диапазоне нужно будет решать, какой выбирать исход, основной или дополнительный. Сложность розыгрыша не зависит от количества исходов.
Такую схему можно создать для любого распределения вероятностей, причем у каждого исхода-донора будет только один исход-реципиент. Схема создается последовательно. На каждом шаге выбирается донор, не полностью использующий свою долю, и реципиент, которому требуется добавка. Конечно, после каждой передачи нужно исключить из рассмотрения донора и уменьшить долю реципиента, так что на следующих итерациях он может сам стать донором.
Пример: Возьмем распределение $p_A = 0.07$, $p_B = 0.31$, $p_C - 0.35$ и $p_D - 0.27$. Для него мы можем получить:
Донор | Барьер | Реципиент | Остаток у реципиента |
---|---|---|---|
A | $0.07 \cdot 4$ | B | $0.31 - 0.18 = 0.13$ |
B | $0.13 \cdot 4$ | D | $0.27 - 0.12 = 0.15$ |
D | $0.15 \cdot 4$ | C | $0.35 - 0.10 = 0.25$ |
C | $0.25 \cdot 4$ | A | $0$ |
При моделировании эти числа используются так: разыгрывается случайное число $x \in [0, 1]$, пусть получилось $x = 0.531$. Это число умножается на $k$: $0.531 \times 4 = 2.124$. Целая часть произведения определяет строку таблицы, считая от нуля, значит, третью сверху строку с основным исходом $D$ и дополнительным $C$. Дробная часть произведения $0.124$ сравнивается с барьером $0.6$, и так как барьер выше, то принимается основной исход.
</wikitex>
См. также
Литература
- Боровков А.А. Математическая статистика: оценка параметров, проверка гипотез. - М., Физматлит, 1984.
- Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн - Алгоритмы. Построение и анализ 1244c.
- Романовский И.В. Дискретный анализ