Независимые случайные величины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
Строка 1: Строка 1:
== Определение ==
+
== Определения ==
  
 
{{Определение
 
{{Определение
 
|id=def1
 
|id=def1
|definition='''Независимые случайные величины''' - <tex> \xi</tex> и <tex>\eta</tex> называются независимыми, если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> независимы.<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)</tex>
+
|definition=Cлучайные величины <tex> \xi</tex> и <tex>\eta</tex> называются '''независимыми''', если <tex>\forall \alpha ,\beta \in \mathbb R</tex> события <tex>[ \xi \leqslant \alpha ]</tex> и <tex>[ \eta \leqslant \beta ]</tex> независимы.<br> <tex>P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)</tex>
 
}}
 
}}
Иначе говоря, две случайные величины называются независимыми, если значение одной из них не влияет на значение другой.
+
Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.
  
== Дискретные случайные величины ==
+
=== Независимость в совокупности ===
 
{{Определение
 
{{Определение
 
|id=def2
 
|id=def2
|definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> с дискретным распределением<ref>Вероятность того, что случайная величина <tex>X</tex> принимает значение меньшее <tex>x</tex>, называется функцией распределения случайной величины <tex>X</tex> и обозначается<br><tex>F(x): F(x) = P</tex><tex>(X \leqslant x)</tex>.</ref> независимы (в совокупности), если для <tex>\forall a_1,...,a_n</tex> имеет место равенство:<br><tex>P(\xi_1=a_1,...,\xi_n=a_n)=P(\xi_1=a_1)·...·P(\xi_n=a_n)</tex>
+
|definition=Случайные величины <tex>\xi_1,...,\xi_n</tex> называются '''независимы в совокупности''', если события <tex>\xi_1 \leqslant \alpha_1,...,\xi_n \leqslant \alpha_n</tex> независимы в совокупности<ref>[[Независимые события]]</ref>.
 
}}
 
}}
Стоит отметить, что если <tex>\xi</tex> и <tex>\eta</tex> - дискретные случайные величины, то достаточно рассматривать случай <tex>\xi = \alpha</tex>, <tex>\eta = \beta</tex>.
 
 
 
== Примеры ==
 
== Примеры ==
  
Строка 31: Строка 29:
 
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
 
Для этих значений <tex>\alpha</tex> и <tex>\beta</tex> события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.
  
Заметим, что если: <tex>\xi (i) = i~mod~3</tex>, <tex>\eta(i) = \left \lfloor i / 3 \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = (\beta = 0)</tex>. Тогда <tex>P(\xi \leqslant 0) = 1/2</tex>, <tex>P(\eta \leqslant 0) = 3/4</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = 1/4 \neq P(\xi \leqslant 0) P(\eta \leqslant 0)</tex>.
+
Заметим, что если: <tex>\xi (i) = i~mod~3</tex>, <tex>\eta(i) = \left \lfloor i / 3 \right \rfloor</tex>, то эти величины зависимы: положим <tex>\alpha = 0, \beta = 0</tex>. Тогда <tex>P(\xi \leqslant 0) = 1/2</tex>, <tex>P(\eta \leqslant 0) = 3/4</tex>, <tex>P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = 1/4 \neq P(\xi \leqslant 0) P(\eta \leqslant 0)</tex>.
  
 
== Примечания ==
 
== Примечания ==
 
<references/>
 
<references/>
 
== См. также ==
 
[[Дискретная случайная величина]]
 
  
 
== Литература и источники информации ==
 
== Литература и источники информации ==

Версия 07:51, 13 января 2012

Определения

Определение:
Cлучайные величины [math] \xi[/math] и [math]\eta[/math] называются независимыми, если [math]\forall \alpha ,\beta \in \mathbb R[/math] события [math][ \xi \leqslant \alpha ][/math] и [math][ \eta \leqslant \beta ][/math] независимы.
[math]P((\xi \leqslant \alpha) \cap (\eta \leqslant \beta)) = P(\xi \leqslant \alpha)·P(\eta \leqslant \beta)[/math]

Иначе говоря, две случайные величины называются независимыми, если по значению одной нельзя сделать выводы о значении другой.

Независимость в совокупности

Определение:
Случайные величины [math]\xi_1,...,\xi_n[/math] называются независимы в совокупности, если события [math]\xi_1 \leqslant \alpha_1,...,\xi_n \leqslant \alpha_n[/math] независимы в совокупности[1].

Примеры

Честная игральная кость

Рассмотрим вероятностное пространство «честная игральная кость»: [math]\Omega = \mathcal {f} 1, 2, 3, 4, 5, 6 \mathcal {g}[/math], [math]\xi (i) = i~mod~2[/math], [math]\eta (i) = \mathcal {b} i / 3 \mathcal {c}[/math]. Для того, чтобы показать, что величины [math]\xi[/math] и [math]\eta[/math] независимы, надо рассмотреть все [math]\alpha[/math] и [math]\beta[/math].

Для примера рассмотрим: [math]\alpha = 0[/math], [math]\beta = 0[/math]. Тогда [math]P( \xi \leqslant 0) = \frac{1}{2}[/math], [math]P( \eta \leqslant 0) = \frac{1}{3}[/math], [math]P((\xi \leqslant 0) \cap (\eta \leqslant 0)) = \frac{1}{6}[/math].

Аналогичным образом можно проверить, что для оставшихся значений [math]\alpha[/math] и [math]\beta[/math] события также являются независимыми, а это значит, что случайные величины [math]\alpha[/math] и [math]\beta[/math] независимы.

Тетраэдр

Рассмотрим вероятностное пространство «тетраэдр». Каждое число соответствует грани тетраэдра (по аналогии с игральной костью): [math]\Omega = \mathcal {f} 0, 1, 2, 3 \mathcal {g}[/math]. [math]\xi (i) = i~mod~2[/math], [math]\eta(i) = \left \lfloor i / 2 \right \rfloor[/math].

Рассмотрим случай: [math]\alpha = 0[/math], [math]\beta = 1[/math]. [math]P(\xi \leqslant 0) = 1/2[/math], [math]P(\eta \leqslant 1) = 1[/math], [math]P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = 1/2[/math].

Для этих значений [math]\alpha[/math] и [math]\beta[/math] события являются независимыми, так же, как и для других (рассматривается аналогично), поэтому эти случайные величины независимы.

Заметим, что если: [math]\xi (i) = i~mod~3[/math], [math]\eta(i) = \left \lfloor i / 3 \right \rfloor[/math], то эти величины зависимы: положим [math]\alpha = 0, \beta = 0[/math]. Тогда [math]P(\xi \leqslant 0) = 1/2[/math], [math]P(\eta \leqslant 0) = 3/4[/math], [math]P((\xi \leqslant 0) \cap (\eta \leqslant 1)) = 1/4 \neq P(\xi \leqslant 0) P(\eta \leqslant 0)[/math].

Примечания

Литература и источники информации

Независимость случайных величин

Википедия: Независимость (теория вероятностей)