Классические теоремы теории измеримых функций — различия между версиями
Sementry (обсуждение | вклад) м (подкорректировал лемму) |
|||
Строка 1: | Строка 1: | ||
+ | Докажем сначала некоторое полезное вспомогательное утверждение. | ||
+ | |||
{{Лемма | {{Лемма | ||
− | |statement=<tex>f_n</tex> {{---}} измерима на <tex>E</tex> и <tex>\mathcal {8}\delta > 0</tex> | + | |statement= |
− | ( | + | Пусть функциональная последовательность <tex>f_n</tex> {{---}} измерима на <tex>E</tex> и <tex>\mathcal {8}\delta > 0:</tex> <tex>\mu E(| f_n - f_m | \ge \delta)\xrightarrow[n,m \rightarrow \infty]{} 0</tex>. Тогда существует последовательность <tex>\exists n_k </tex>, такая что <tex>\{f_{n_k}(x)\} </tex> почти всюду сходится на <tex>E</tex>. <br> |
+ | (Другими словами, из сходимости в себе функциональной последовательности следует сходимость почти всюду на подпоследовательности). | ||
|proof= | |proof= | ||
+ | Для начала, докажем от нечего делать обратное утверждение: | ||
+ | |||
<tex>f_n \Rightarrow f</tex> на <tex>E</tex>. <tex>\mathcal{8} \delta > 0:</tex><br> | <tex>f_n \Rightarrow f</tex> на <tex>E</tex>. <tex>\mathcal{8} \delta > 0:</tex><br> | ||
<tex>E(|f_n - f_m| \geq \delta) \subset E(|f_n - f| \geq \frac{\delta}{3}) ~ \cup ~ E(|f_m - f| \geq \frac{\delta}{3}); </tex> <br> | <tex>E(|f_n - f_m| \geq \delta) \subset E(|f_n - f| \geq \frac{\delta}{3}) ~ \cup ~ E(|f_m - f| \geq \frac{\delta}{3}); </tex> <br> | ||
<tex>\mu E(|f_n - f_m| \geq \delta) \leq \mu E(|f_n - f| \geq \frac{\delta}{3})(\rightarrow 0) + E(|f_m - f| \geq \frac{\delta}{3})(\rightarrow 0)</tex> | <tex>\mu E(|f_n - f_m| \geq \delta) \leq \mu E(|f_n - f| \geq \frac{\delta}{3})(\rightarrow 0) + E(|f_m - f| \geq \frac{\delta}{3})(\rightarrow 0)</tex> | ||
− | |||
− | Возьмём <tex> | + | То есть, из сходимости по мере вытекает сходимость по мере в себе. |
+ | |||
+ | Возьмём <tex> \varepsilon_k > 0, \sum\limits_{k = 1}^\infty \varepsilon_k < +\infty</tex>. Например, <tex>\varepsilon_k = \frac{1}{2^k}</tex>. | ||
− | В силу условия леммы, <tex>\ | + | В силу условия леммы, для <tex>\varepsilon_1\ \exists n_1 \forall n, m > n_1 : \mu E(|f_n - f_m| \geq \varepsilon_1) < \varepsilon_1</tex> |
− | <tex>m = n_1</tex>, <tex>\forall n \geq m</tex> | + | Рассмотрим <tex>m = n_1</tex>, <tex>\forall n \geq m</tex>: |
<tex>\varepsilon_2 : \exists n_2 > n_1\ \forall n > n_2 : \mu E(|f_n - f_{n_2}| \geq \varepsilon_2) < \varepsilon_2</tex> | <tex>\varepsilon_2 : \exists n_2 > n_1\ \forall n > n_2 : \mu E(|f_n - f_{n_2}| \geq \varepsilon_2) < \varepsilon_2</tex> | ||
Строка 28: | Строка 34: | ||
<tex>B_k = \bigcup\limits_{j=k}^\infty E(|f_{n_{j + 1}} - f_{n_j}| \geq \varepsilon_j)</tex> | <tex>B_k = \bigcup\limits_{j=k}^\infty E(|f_{n_{j + 1}} - f_{n_j}| \geq \varepsilon_j)</tex> | ||
− | <tex>\mu B_k \leq \sum\limits_{j=k}^\infty \mu E(|f_{n_{j + 1}} - f_{n_j}| \geq \varepsilon_j) < \sum\limits_{j = k}^\infty \varepsilon_j \ | + | <tex>\mu B_k \leq \sum\limits_{j=k}^\infty \mu E(|f_{n_{j + 1}} - f_{n_j}| \geq \varepsilon_j) < \sum\limits_{j = k}^\infty \varepsilon_j \rightarrow 0</tex> как остаток сходящегося положительного ряда <tex>\varepsilon_k</tex>. |
<tex>B = \bigcap\limits_{k=1}^\infty B_k</tex>, <tex>B \subset B_k</tex>, по монотонности меры, <tex>\mu B \leq \mu B_k \to 0</tex>. Значит, <tex>\mu B = 0</tex>. | <tex>B = \bigcap\limits_{k=1}^\infty B_k</tex>, <tex>B \subset B_k</tex>, по монотонности меры, <tex>\mu B \leq \mu B_k \to 0</tex>. Значит, <tex>\mu B = 0</tex>. | ||
− | + | Рассмотрим <tex>A = E \setminus B</tex> и установим, что на этом множестве последовательность функций <tex>\{f_{n_k}\}</tex> сходится. Тогда, в силу нульмерности <tex>B</tex>, что она будет сходиться на <tex>E</tex> уже почти всюду. | |
− | <tex>A = \bar B = \bigcap\limits_{k=1}^\infty \bar B_k</tex> | + | <tex>A = \bar B = \bigcap\limits_{k=1}^\infty \bar B_k</tex>. |
− | <tex>x \in A | + | Так как <tex>x \in A </tex>, то есть <tex> k_x </tex>, такой, что <tex> x \in \bar B_{k_x}</tex>. |
− | <tex>\bar B_{k_x} = \bigcap\limits_{j=k_x}^\infty E(|f_{n_{j + 1}} - f_{n_j} < \varepsilon_j | + | <tex>\bar B_{k_x} = \bigcap\limits_{j=k_x}^\infty E(|f_{n_{j + 1}} - f_{n_j}| < \varepsilon_j)</tex> |
Раз <tex>x \in \bar B_{k_x}</tex>, <tex>\forall j \geq k_x : |f_{n_{j + 1}}(x) - f_{n_j}(x)| < \varepsilon_j</tex> | Раз <tex>x \in \bar B_{k_x}</tex>, <tex>\forall j \geq k_x : |f_{n_{j + 1}}(x) - f_{n_j}(x)| < \varepsilon_j</tex> | ||
− | <tex>f_{n_1}(x) + \sum\limits_{j = 1}^\infty(f_{n_{j + 1}}(x) - f_{n_j}(x))</tex> | + | Рассмотрим теперь выражение <tex>f_{n_1}(x) + \sum\limits_{j = 1}^\infty(f_{n_{j + 1}}(x) - f_{n_j}(x))</tex>: |
Для заданного <tex>x</tex> начиная с <tex>j = k</tex>, <tex>|f_{n_{j + 1}}(x) - f_{n_j}(x) | </tex> начнут мажорироваться сходящимся рядом <tex>\varepsilon_k</tex>. Тогда этот ряд сходится. Значит, <tex>\forall x\leq A</tex> функциональная последовательность сходится. | Для заданного <tex>x</tex> начиная с <tex>j = k</tex>, <tex>|f_{n_{j + 1}}(x) - f_{n_j}(x) | </tex> начнут мажорироваться сходящимся рядом <tex>\varepsilon_k</tex>. Тогда этот ряд сходится. Значит, <tex>\forall x\leq A</tex> функциональная последовательность сходится. | ||
Строка 76: | Строка 82: | ||
}} | }} | ||
− | |||
Будет разговор о <tex>C</tex>-свойстве Лузина. Приведём без доказательства, но из неё выведем важную теорему Фреше. | Будет разговор о <tex>C</tex>-свойстве Лузина. Приведём без доказательства, но из неё выведем важную теорему Фреше. | ||
Строка 87: | Строка 92: | ||
Это принято называть <tex>C</tex>-свойством Лузина. | Это принято называть <tex>C</tex>-свойством Лузина. | ||
− | Если, помимо всего прочего, <tex>f(x)</tex> ограничена <tex>M</tex> на <tex>E</tex>, то <tex>\varphi</tex> можно подобрать таким образом, что она ограничена той же постоянной на <tex>\mathbb{R}^n</tex> | + | Если, помимо всего прочего, <tex>f(x)</tex> ограничена <tex>M</tex> на <tex>E</tex>, то <tex>\varphi</tex> можно подобрать таким образом, что она ограничена той же постоянной на <tex>\mathbb{R}^n</tex>. |
== Теорема Фреше == | == Теорема Фреше == | ||
Строка 136: | Строка 141: | ||
<tex>\forall x \in \bar E' \Rightarrow \forall p=1,2,\ldots x \in \bigcap\limits_{n=m_p}^\infty E(|f_n - f| < \frac1p)</tex>. Значит, <tex>\forall n > m_p : |f_n(x) - f(x)| \leq \frac1p</tex>. | <tex>\forall x \in \bar E' \Rightarrow \forall p=1,2,\ldots x \in \bigcap\limits_{n=m_p}^\infty E(|f_n - f| < \frac1p)</tex>. Значит, <tex>\forall n > m_p : |f_n(x) - f(x)| \leq \frac1p</tex>. | ||
− | В силу того, что номер <tex>m_p</tex> выбирается независимо от <tex>x</tex>, а только по <tex>\delta</tex> и <tex> | + | В силу того, что номер <tex>m_p</tex> выбирается независимо от <tex>x</tex>, а только по <tex>\delta</tex> и <tex>p</tex>, <tex>f_n \stackrel{\bar E'}{\Rightarrow} f</tex>. |
}} | }} | ||
Смысл теоремы Егорова в том, что сходимость почти наверное с точностью до множества малой меры {{---}} равномерная сходимость. | Смысл теоремы Егорова в том, что сходимость почти наверное с точностью до множества малой меры {{---}} равномерная сходимость. |
Версия 02:12, 7 января 2012
Докажем сначала некоторое полезное вспомогательное утверждение.
Лемма: |
Пусть функциональная последовательность — измерима на и . Тогда существует последовательность , такая что почти всюду сходится на . (Другими словами, из сходимости в себе функциональной последовательности следует сходимость почти всюду на подпоследовательности). |
Доказательство: |
Для начала, докажем от нечего делать обратное утверждение:
То есть, из сходимости по мере вытекает сходимость по мере в себе. Возьмём . Например, .В силу условия леммы, для Рассмотрим , :
Раз , (По выбору )
Раз ,Продолжаем по индукции :
как остаток сходящегося положительного ряда . , , по монотонности меры, . Значит, . Рассмотрим и установим, что на этом множестве последовательность функций сходится. Тогда, в силу нульмерности , что она будет сходиться на уже почти всюду.. Так как , то есть , такой, что .
Раз ,Рассмотрим теперь выражение Для заданного : начиная с , начнут мажорироваться сходящимся рядом . Тогда этот ряд сходится. Значит, функциональная последовательность сходится. |
Содержание
Связь сходимости по мере и почти всюду
Разделим
на равных частей. .
Растягиваем матрицу этих функций в строчку:
— функциональная последовательность., . В силу определений этих функций очевидно, что
Очевидно, что
С другой стороны очевидно, что к
она почти всюду не стремится, ибо, фиксировав , стремится на нёмМы можем строить подпоследовательность функций, которые равны
, значит, стремятся к . Аналогично с нулём.Мы получили пример, что даже на множестве конечной меры, из сходимости по мере сходимость почти всюду не следует.
Теорема Рисса
Теорема (Фердинанд Рисс): |
Пусть последовательность функций сходится по мере к функции на . Тогда из неё можно выделить подпоследовательность, которая сходится почти всюду на |
Доказательство: |
Выше мы показали, что если Тогда, по лемме, выделяем требуемую последовательность функций. , то , |
Будет разговор о
-свойстве Лузина. Приведём без доказательства, но из неё выведем важную теорему Фреше.Теорема (Лузин): |
, — измерима на по мере Лебега. Тогда — непрерывная на , |
Доказательство: |
Не в этой жизни |
Это принято называть
-свойством Лузина.Если, помимо всего прочего,
ограничена на , то можно подобрать таким образом, что она ограничена той же постоянной на .Теорема Фреше
Теорема (Фреше): |
, — измерима на . Тогда — последовательность непрерывных на функций такая, что почти всюду на |
Доказательство: |
. По теореме Лузина, — непрерывная По теореме Рисса, . Значит, . Значит, почти всюду на |
Теорема Егорова
Д.Ф. Егоров — основатель московской школы теории функций. Не понравился Сталину, жизнь закончил в городе Казань.
Теорема (Егоров): |
Пусть , почти всюду на , .
Тогда , , |
Доказательство: |
— нульмерно.
В силу конечности меры , из -аддитивности, . Но любое пересечение содержится в объединении — нульмерно по монотонности меры, .
По полуаддитивности меры, ,
По двойственности, . Значит, Окончательно получается, что
В силу того, что номер . Значит, . выбирается независимо от , а только по и , . |
Смысл теоремы Егорова в том, что сходимость почти наверное с точностью до множества малой меры — равномерная сходимость.