Отношение порядка — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 40: Строка 40:
  
 
== Ссылки ==
 
== Ссылки ==
* [http://ru.wikipedia.org/wiki/%D0%A7%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%BD%D0%BE_%D1%83%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BE%D1%87%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE Wikipedia: Частично упорядоченные множества]
+
* [[wikipedia:ru:Частично_упорядоченные_множества| Wikipedia {{---}} Частично упорядоченные множества]]
  
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Дискретная математика и алгоритмы]]
 
[[Категория: Отношения]]
 
[[Категория: Отношения]]

Версия 16:38, 14 декабря 2012

Определения

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением частичного порядка, если оно обладает следующими свойствами:

Множество [math]X[/math], на котором введено отношение частичного порядка, называется частично упорядоченным.

Отношение частичного порядка также называют нестрогим порядком.

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется строгим отношением частичного порядка, если оно обладает следующими свойствами:


Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением линейного порядка, если оно является отношением частичного порядка и обладает следующим свойством: [math]\forall a \in X \forall b \in X[/math] либо [math]aRb[/math], либо [math]bRa[/math].

Множество [math]X[/math], на котором введено отношение линейного порядка, называется линейно упорядоченным.

Определение:
Бинарное отношение [math]R[/math] на множестве [math]X[/math] называется отношением полного порядка, если оно является отношением линейного порядка и обладает следующим свойством: [math]\forall Y \in X \exists a \in Y \forall b \in Y: aRb[/math].

Множество [math]X[/math], на котором введено отношение полного порядка, называется полностью упорядоченным.

Отношение нестрогого порядка обозначают символом [math]\leqslant[/math]. Запись вида [math]a \leqslant b[/math] читают как «[math]a[/math] меньше либо равно [math]b[/math]».

Отношение строгого порядка обозначают символом [math]\lt [/math]. Запись вида [math]a \lt b[/math] читают как «[math]a[/math] меньше [math]b[/math]».

Примеры

  • На множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого, причем линейного порядка, но не полного.
  • Отношение «являться делителем» на множестве целых чисел является отношением частичного порядка.
  • Отношение «меньше или равно» является отношением полного порядка на множестве натуральных чисел.

Ссылки