Унитарные операторы — различия между версиями
(→Матричная запись вычислений) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
==Унитарное преобразование== | ==Унитарное преобразование== | ||
Преобразование нормированного пространства, сохраняющее норму вектора, называется унитарным. | Преобразование нормированного пространства, сохраняющее норму вектора, называется унитарным. | ||
Версия 07:24, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Унитарное преобразование
Преобразование нормированного пространства, сохраняющее норму вектора, называется унитарным.
Простейшие свойства унитарного преобразования:
- унитарный оператор всегда обратим
- если оператор -- эрмитов, то оператор -- унитарный
- существует оператор, обратный к унитарному , где - оператор, сопряженный к
Унитарные операторы играют огромную роль в квантовой информатике.
Воздействие на кубит
Унитарность воздействия
Покажем, что любое физическое воздействие на кубит в квантовой механике описывается линейным унитарным оператором как .
Линейность вытекает из линейности уравнения Шредингера. Пусть - вектор, описывающий состояние системы. Тогда уравнение Шредингера записывается как , где оператор -- оператор Гамильтона. Решение этого уравнения с начальным условием может быть записано в виде . Оператор Гамильтона должен быть эрмитовым, чтобы допустимые значения энергии системы были вещественными. Тогда оператор тоже будет эрмитов. Отсюда в силу свойства 2 унитарного оператора вытекает, что оператор -- унитарный, что и требовалось показать.
Унитарность оператора означает, что если исходное состояние квантовой системы нормировано, то и состояние, в которое система перейдет после совершения воздействия также будет нормированным.
Квантовые вычисления
В дальнейшем будем рассматривать воздействие на кубит (или на систему кубитов) как процесс вычисления. При этом вектор играет роль входных данных, оператор -- вычислительного процесса, а вектор -- результата вычислений.
Так как воздействие представимо унитарным оператором, то любой вычислительный процесс обратим.
Матричная запись вычислений
Будем использовать матричное представление операторов .
Рассмотрим действие оператора на кубит. В силу линейности оператора , то есть действие оператора на кубит предствляется действием на базисные вектора и , которые представляют собой ортонормированный базис в двумерном гильбертовом пространстве. Тогда получим:
Тогда вычисление можно записать в виде
или просто . Матрица называется матричным представлением оператора . Свойство унитарности оператора налагает требование унитарности на его матрицу.
Примеры однокомпонентных логических элементов
Воздействие на n-кубит
Двухкубитовые системы и операторы
Для простоты будем рассматривать 2-кубиты. Все сказанное ниже может быть несложным образом обобщено на случай
Рассмотрим систему из двух кубитов:
,
Построим векторное пространство, элементами которого являются пары векторов, один из которых принадлежит , а другой . Такое пространство называется тензорным произведением и и обозначается как .
Базисные вектора такого пространства представляют собой
,
,
,
.
Базисные вектора тензорного произведения являются ортонормированными.
Любое состояние двухкубитовой системы можно представить как
, где как и раньше - вероятность обнаружить систему в состоянии .
Операторы, определенные в тензорном произведении действуют покомнонентно: