Вычислимые функции — различия между версиями
(→Примеры вычислимых функций) |
Leugenea (обсуждение | вклад) м («утверждение» → «лемма») |
||
| Строка 40: | Строка 40: | ||
== Свойства вычислимой функции == | == Свойства вычислимой функции == | ||
| − | {{ | + | {{Лемма |
| − | |id = | + | |id = lemma- |
|statement = <tex>f</tex> {{---}} вычислимая функция, <tex>D(f)</tex> {{---}} область определения функции <tex>f</tex>. Тогда <tex>D(f)</tex> является перечислимым множеством. | |statement = <tex>f</tex> {{---}} вычислимая функция, <tex>D(f)</tex> {{---}} область определения функции <tex>f</tex>. Тогда <tex>D(f)</tex> является перечислимым множеством. | ||
|proof = | |proof = | ||
| Строка 50: | Строка 50: | ||
Если функция <tex>f</tex> определена на входе <tex>x</tex>, то <tex>x \in D(f)</tex>. Тогда необходимо вернуть 1. Иначе программа зависнет при вызове <tex>f(x)</tex>. | Если функция <tex>f</tex> определена на входе <tex>x</tex>, то <tex>x \in D(f)</tex>. Тогда необходимо вернуть 1. Иначе программа зависнет при вызове <tex>f(x)</tex>. | ||
}} | }} | ||
| − | {{ | + | {{Лемма |
| + | |id = lemma- | ||
|statement = <tex>f</tex> {{---}} вычислимая функция, <tex>E(f)</tex> {{---}} область значений <tex>f</tex>. Тогда <tex>E(f)</tex> является перечислимым множеством. | |statement = <tex>f</tex> {{---}} вычислимая функция, <tex>E(f)</tex> {{---}} область значений <tex>f</tex>. Тогда <tex>E(f)</tex> является перечислимым множеством. | ||
|proof = | |proof = | ||
| Строка 60: | Строка 61: | ||
Так как <tex>D(f)</tex> перечислимо, то можно перебрать элементы этого множества. Если программа находит слово, то она возвращает 1. | Так как <tex>D(f)</tex> перечислимо, то можно перебрать элементы этого множества. Если программа находит слово, то она возвращает 1. | ||
}} | }} | ||
| − | {{ | + | {{Лемма |
| + | |id = lemma- | ||
|statement = <tex>f</tex> {{---}} вычислимая функция, <tex>X</tex> {{---}} перечислимое множество. Тогда <tex>f(X)</tex> является перечислимым множеством. | |statement = <tex>f</tex> {{---}} вычислимая функция, <tex>X</tex> {{---}} перечислимое множество. Тогда <tex>f(X)</tex> является перечислимым множеством. | ||
|proof = | |proof = | ||
| Строка 70: | Строка 72: | ||
Из [[Замкнутость_разрешимых_и_перечислимых_языков_относительно_теоретико-множественных_и_алгебраических_операций|замкнутости перечислимых языков относительно операции пересечения]] следует, что элементы множества <tex>X \cap D(f)</tex> можно перебрать. Если программа находит слово, то она возвращает 1. | Из [[Замкнутость_разрешимых_и_перечислимых_языков_относительно_теоретико-множественных_и_алгебраических_операций|замкнутости перечислимых языков относительно операции пересечения]] следует, что элементы множества <tex>X \cap D(f)</tex> можно перебрать. Если программа находит слово, то она возвращает 1. | ||
}} | }} | ||
| − | {{ | + | {{Лемма |
| + | |id = lemma- | ||
|statement = <tex>f</tex> {{---}} вычислимая функция, <tex>X</tex> {{---}} перечислимое множество. Тогда <tex>f^{-1}(X)</tex> является перечислимым множеством. | |statement = <tex>f</tex> {{---}} вычислимая функция, <tex>X</tex> {{---}} перечислимое множество. Тогда <tex>f^{-1}(X)</tex> является перечислимым множеством. | ||
|proof = | |proof = | ||
Версия 22:20, 23 января 2012
Содержание
Основные определения
| Определение: |
Функция называется вычислимой, если существует программа, вычисляющая функцию , такая, что:
|
| Определение: |
| Функция называется вычислимой, если её график определено и равно является перечислимым множеством пар натуральных чисел. |
| Теорема: |
Приведенные определения эквивалентны. |
| Доказательство: |
|
for if return 1 Так как область определения вычислимой функции перечислима, то можно перебрать элементы области определения. Если алгоритм нашел нужную нам пару, то вернуть 1. for if returnТак как — перечислимое множество, то можно перебрать элементы этого множества. |
Замечание
Входами и выходами программ могут быть не только натуральные числа, но и двоичные строки, пары натуральных чисел, конечные последовательности слов и многое другое. Поэтому аналогичным образом можно определить понятие вычислимой функции для счётных множеств.
Примеры вычислимых функций
- Нигде не определённая функция вычислима.
while true
- , где — рациональное число.
return
Свойства вычислимой функции
| Лемма: |
— вычислимая функция, — область определения функции . Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. return 1Если функция определена на входе , то . Тогда необходимо вернуть 1. Иначе программа зависнет при вызове . |
| Лемма: |
— вычислимая функция, — область значений . Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. for if return 1Так как перечислимо, то можно перебрать элементы этого множества. Если программа находит слово, то она возвращает 1. |
| Лемма: |
— вычислимая функция, — перечислимое множество. Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. for if return 1Из замкнутости перечислимых языков относительно операции пересечения следует, что элементы множества можно перебрать. Если программа находит слово, то она возвращает 1. |
| Лемма: |
— вычислимая функция, — перечислимое множество. Тогда является перечислимым множеством. |
| Доказательство: |
|
Для доказательства достаточно написать полуразрешающую программу. if return 1На проверке условия программа может зависнут, если не определено или . Если не определено, то . Условие можно проверить, так как перечислимо. |
Теорема об униформизации
| Теорема: |
Пусть — перечислимое множество пар натуральных чисел. Тогда существует вычислимая функция , определённая на тех и только тех , для которых найдется , при котором , причём значение является одним из таких . |
| Доказательство: |
|
Напишем программу, вычисляющую функцию . for if returnТак как множество перечислимо, то его элементы можно перебрать. |
Теорема о псевдообратной функции
| Теорема: |
Для любой вычислимой функции существует вычислимая функция , являющаяся псевдообратной в следующем смысле: , и при этом для всех , при которых определена. |
| Доказательство: |
|
Напишем программу, вычисляющую функцию . for if returnТак как область определения вычислимой функции перечислима, то можно перебрать элементы области определения. |
Литература
- Верещагин Н. К., Шень А. Лекции по математической логике и теории алгоритов. Часть 3. Вычислимые функции — М.: МЦНМО, 1999 - С. 176