Лемма о разрастании для КС-грамматик — различия между версиями
(→Лемма о разрастании для КС-грамматик) |
(→Лемма о разрастании для КС-грамматик) |
||
Строка 19: | Строка 19: | ||
*Рассмотрим стартовый нетерминал <tex>S</tex>. Из <tex>S</tex> выведена строка <tex>\omega</tex>. При этом <tex>S \Rightarrow^{*} \alpha A \beta \Rightarrow^{*} \omega </tex>, где <tex>A</tex> {{---}} выбранный ранее нетерминал. Из <tex>A</tex> в данном дереве разбора выведена строка <tex>vxy</tex>. Пусть <tex>u</tex> и <tex>z</tex> {{---}} строки, состоящие из терминалов, которые выведены соответственно из <tex>\alpha</tex> и <tex>\beta</tex> в данном дереве разбора. Тогда <tex>S \Rightarrow^{*} uAz \Rightarrow^{*} uvAyz \Rightarrow^{*} \omega</tex>. | *Рассмотрим стартовый нетерминал <tex>S</tex>. Из <tex>S</tex> выведена строка <tex>\omega</tex>. При этом <tex>S \Rightarrow^{*} \alpha A \beta \Rightarrow^{*} \omega </tex>, где <tex>A</tex> {{---}} выбранный ранее нетерминал. Из <tex>A</tex> в данном дереве разбора выведена строка <tex>vxy</tex>. Пусть <tex>u</tex> и <tex>z</tex> {{---}} строки, состоящие из терминалов, которые выведены соответственно из <tex>\alpha</tex> и <tex>\beta</tex> в данном дереве разбора. Тогда <tex>S \Rightarrow^{*} uAz \Rightarrow^{*} uvAyz \Rightarrow^{*} \omega</tex>. | ||
− | Покажем, что <tex>|vxy| \leqslant n</tex>. Допустим, что <tex>|vxy|>n</tex>. Тогда высота поддерева с корнем в вершине, соответствующей выбранному <tex>A</tex>, не меньше <tex>m+2</tex>. Рассмотрим поддерево вершины, в | + | Покажем, что <tex>|vxy| \leqslant n</tex>. Допустим, что <tex>|vxy|>n</tex>. Тогда высота поддерева с корнем в вершине, соответствующей выбранному <tex>A</tex>, не меньше <tex>m+2</tex>. Рассмотрим поддерево вершины, в котором содержится нетерминал <tex>A</tex>. Тогда высота этого поддерева не меньше <tex>m+1</tex>. Рассмотрим путь максимальной длины от корня этого поддерева к листу. В нем содержится не менее <tex>m+1</tex> нетерминалов, причем не содержится стартовый нетерминал. Следовательно, на этом пути найдутся два одинаковых нетерминала, что противоречит условию наибольшей удаленности от корня выбранного ранее нетерминала <tex>A</tex>. Получили противоречие. Поэтому <tex>|vxy|\leqslant n</tex>. |
Таким образом, в рамках нашей грамматики мы можем построить цепочку вывода: <tex>S \Rightarrow^{*} uAz \Rightarrow^{*} uvAyz \Rightarrow^{*} uvvAyyz \Rightarrow^{*} uv^{k}Ay^{k}z \Rightarrow^{*} uv^{k}xy^{k}z</tex>. | Таким образом, в рамках нашей грамматики мы можем построить цепочку вывода: <tex>S \Rightarrow^{*} uAz \Rightarrow^{*} uvAyz \Rightarrow^{*} uvvAyyz \Rightarrow^{*} uv^{k}Ay^{k}z \Rightarrow^{*} uv^{k}xy^{k}z</tex>. | ||
}} | }} |
Версия 02:42, 24 января 2012
Содержание
Лемма о разрастании для КС-грамматик
Лемма (о разрастании КС-грамматик): |
Пусть контекстно-свободный язык над алфавитом , тогда существует такое , что для любого слова длины не меньше найдутся слова , для которых верно: и . — |
Доказательство: |
Грамматика любого контекстно-свободного языка может быть записана в нормальной форме Хомского (НФХ). Пусть — количество нетерминалов в грамматике языка , записанной в НФХ.
Выберем . Построим дерево разбора произвольного слова длиной больше, чем . Высотой дерева разбора назовем максимальное число нетерминальных символов на пути от корня дерева к листу. Так как грамматика языка записана в НФХ, то у любого нетерминала в дереве могут быть, либо два потомка нетерминала, либо один потомок терминал. Поэтому высота дерева разбора слова не меньше .Выберем путь от корня дерева к листу максимальной длины. Количество нетерминалов в нем не меньше, чем , следовательно, найдется такой нетерминал , который встречается на этом пути дважды. Значит, в дереве разбора найдется нетерминал , в поддереве которого содержится нетерминал . Выберем такой нетерминал , чтобы в его поддереве содержался такой же нетерминал и длина пути от него до корня была максимальна среди всех нетерминалов, содержащих в поддереве такой же нетерминал.Найдем слова .
Покажем, что Таким образом, в рамках нашей грамматики мы можем построить цепочку вывода: . Допустим, что . Тогда высота поддерева с корнем в вершине, соответствующей выбранному , не меньше . Рассмотрим поддерево вершины, в котором содержится нетерминал . Тогда высота этого поддерева не меньше . Рассмотрим путь максимальной длины от корня этого поддерева к листу. В нем содержится не менее нетерминалов, причем не содержится стартовый нетерминал. Следовательно, на этом пути найдутся два одинаковых нетерминала, что противоречит условию наибольшей удаленности от корня выбранного ранее нетерминала . Получили противоречие. Поэтому . . |
Замечание. Условие леммы не является достаточным для контекстно-свободности языка. Но, в силу необходимости условия, данная лемма часто используется для доказательства неконтекстно-свободности языков.
Пример доказательства неконтекстно-свободности языка с использованием леммы
Рассмотрим язык
. Покажем, что он не является контекстно-свободным.Для фиксированного
рассмотрим слово . Пусть разбили на произвольным образом. Так как , то в слове не содержится либо ни одного символа , либо ни одного символа . Для любого такого разбиения выбираем и получаем, что количество символов изменилось, а количество либо , либо осталось тем же. Очевидно, что такое слово не принадлежит рассмотренному языку. Значит, язык не является контекстно-свободным по лемме о разрастании для КС-грамматик.Источники
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)