|
|
Строка 9: |
Строка 9: |
| }} | | }} |
| | | |
− | Цепная дробь <tex>\langle a_0, a_1, a_2,\cdots, a_n \rangle </tex> представима в виде <tex> \frec{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} </tex>. | + | Цепная дробь <tex>\langle a_0, a_1, a_2,\cdots, a_n \rangle </tex> представима в виде <tex> \frac{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} </tex>. |
− | Отсюда видим, что <tex> \frec{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} = a_0 + \frec{[a_2, a_3, a_4,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} </tex>. | + | Отсюда видим, что <tex> \frac{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} = a_0 + \frac{[a_2, a_3, a_4,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} </tex>. |
| <tex> [a_0, a_1, a_2,\cdots, a_n] = a_0[a_1, a_2, a_3,\cdots, a_n] + [a_2, a_3, a_4,\cdots, a_n]</tex>. | | <tex> [a_0, a_1, a_2,\cdots, a_n] = a_0[a_1, a_2, a_3,\cdots, a_n] + [a_2, a_3, a_4,\cdots, a_n]</tex>. |
| | | |
| [[Категория: Теория чисел]] | | [[Категория: Теория чисел]] |
Версия 15:07, 27 июня 2010
Эта статья находится в разработке!
Определение: |
Цепная дробь — это выражение вида
[math]\langle a_0, a_1, a_2, a_3,\cdots \rangle = a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+\ldots}}}\;[/math]
где [math]a_0[/math] есть целое число и все остальные [math]a_n[/math] натуральные числа.
Различают конечные и бесконечные цепные дроби. Любая конечная дробь [math]\langle a_0, a_1, a_2, a_3,\ldots, a_n \rangle[/math] представима в виде некоторой рациональной дроби [math]\frac{P_n}{Q_n}[/math], которую называют n-ой подходящей дробью. |
Цепная дробь [math]\langle a_0, a_1, a_2,\cdots, a_n \rangle [/math] представима в виде [math] \frac{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} [/math].
Отсюда видим, что [math] \frac{[a_0, a_1, a_2,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} = a_0 + \frac{[a_2, a_3, a_4,\cdots, a_n]}{[a_1, a_2, a_3,\cdots, a_n]} [/math].
[math] [a_0, a_1, a_2,\cdots, a_n] = a_0[a_1, a_2, a_3,\cdots, a_n] + [a_2, a_3, a_4,\cdots, a_n][/math].