Первообразные корни — различия между версиями
Haliullin (обсуждение | вклад) м |
Haliullin (обсуждение | вклад) (→Теорема о существовании первообразных корней по модулям 4 \text{, }p^n \text{, }2 \cdot p^n) |
||
Строка 34: | Строка 34: | ||
|proof= | |proof= | ||
Сначала разберем случай <math>p^2</math>. | Сначала разберем случай <math>p^2</math>. | ||
− | Пусть <tex>g</tex> — первообразный корень по модулю <tex>p\text{, }k=ord_{p^2}(g)</tex>. Тогда <tex>g^k=1(p^2)</tex>, следовательно <tex>g^k=1(p)</tex>, и значит <tex>k\vdots (p-1)</tex>. Также заметим, что <tex>\phi(p^2)=p(p-1)\vdots k</tex>. Получаем два случая — <tex>k=p-1</tex>, и <tex>k=p(p-1)</tex>. Во втором случае получается что <tex>g</tex> — первообразный корень по модулю <tex>p^2</tex>. Теперь рассмотрим первый случай: | + | Пусть <tex>g</tex> — первообразный корень по модулю <tex>p\text{, }k=ord_{p^2}(g)</tex>. Тогда <tex>g^k=1(p^2)</tex>, следовательно <tex>g^k=1(p)</tex>, и значит <tex>k\vdots (p-1)</tex>. Также заметим, что <tex>\phi(p^2)=p(p-1)\vdots k</tex>. Получаем два случая — <tex>k=p-1</tex>, и <tex>k=p(p-1)</tex>. Во втором случае получается что <tex>g</tex> — первообразный корень по модулю <tex>p^2</tex>. Теперь рассмотрим первый случай: применим предыдущие рассуждения к числу <tex>g+p</tex> (это возможно, так как <tex>g+p\equiv g (p)</tex>). <tex>(g+p)^{p-1}=g^{p-1}+c^{1}_{p-1}g^{p-2}p+...</tex> — заметим, что все слагаемые, начиная с третьего содержат множитель <tex>p^2</tex> — поэтому обнуляются по модулю <tex>p^2</tex>. <tex>g^{p-1}=1(p^2)</tex>, а <tex>c^{1}_{p-1}g^{p-2}p=p(p-1)g^{p-2}\neq 0(p^2)</tex>, значит <tex>(g+p)^{p-1}\neq 1(p^2)</tex>, значит число <tex>k</tex>, для <tex>g+p</tex> не может быть равно <tex>p-1</tex>, тогда <tex>g+p</tex> — первеобразный корень по модулю <tex>p^2</tex>. Аналогичным образом, если имеется первообразный корень по модулю <tex>p^a</tex> отыскивается первообразный корень по модулю <tex>p^{a+1}</tex>. |
}} | }} | ||
[[Категория: Теория чисел]] | [[Категория: Теория чисел]] |
Версия 07:44, 22 сентября 2010
Эта статья находится в разработке!
Первообразные корни
Определение: |
Вычет | называется первообразным корнем по модулю , если .
Где — порядок числа , а — функция Эйлера.
Теорема: |
Пусть — первообразный корень по модулю . Тогда a — первообразный корень по модулю НОД . |
Доказательство: |
Так как ga — первообразный корень, значит (ga)φ(p)=1, но p , поэтому φ(p)=p-1, значит (ga)p-1=1, и это же справедливо для g: gp-1=1. Пусть НОД(a;p-1)=k, k>1, тогда . Но, по определению ord, — минимальная степень, в которую следует возвести , чтобы получить единицу, а . Получили противоречие, теорема доказана.
|
Теорема (О количестве первообразных корней): |
Количество различных первообразных корней по модулю p равно φ(p-1). |
Доказательство: |
Пусть g — первообразный корень. |
Теорема о существовании первообразных корней по модулям
Теорема: |
По модулям существуют первообразные корни. |
Доказательство: |
Сначала разберем случай Пусть . — первообразный корень по модулю . Тогда , следовательно , и значит . Также заметим, что . Получаем два случая — , и . Во втором случае получается что — первообразный корень по модулю . Теперь рассмотрим первый случай: применим предыдущие рассуждения к числу (это возможно, так как ). — заметим, что все слагаемые, начиная с третьего содержат множитель — поэтому обнуляются по модулю . , а , значит , значит число , для не может быть равно , тогда — первеобразный корень по модулю . Аналогичным образом, если имеется первообразный корень по модулю отыскивается первообразный корень по модулю . |