Теорема Бермана — Форчуна — различия между версиями
AndrewD (обсуждение | вклад) |
AndrewD (обсуждение | вклад) |
||
| Строка 4: | Строка 4: | ||
|proof=Пусть <tex>L \in coNPC</tex>. Тогда <tex>L \in coNP</tex> и <tex>\overline L \in NP</tex>. | |proof=Пусть <tex>L \in coNPC</tex>. Тогда <tex>L \in coNP</tex> и <tex>\overline L \in NP</tex>. | ||
| − | Рассмотрим произвольный язык <tex>L_1 \in NP</tex>. Тогда <tex>\overline {L_1} \in coNP</tex>. Так как <tex>L \in coNPC</tex>, то <tex>\overline {L_1} \le L</tex>, следовательно <tex>L_1 \le \overline L</tex>. | + | Рассмотрим произвольный язык <tex>L_1 \in NP</tex>. Тогда <tex>\overline {L_1} \in coNP</tex>. Так как <tex>L \in coNPC</tex>, то <tex>\overline {L_1} \le L</tex>, [[Сведение по Карпу. Трудные и полные задачи|следовательно]] <tex>L_1 \le \overline L</tex>. |
Получили, что <tex>\overline L \in NP</tex> и <tex>\forall L_1 \in NP \, L_1 \le \overline L</tex>. Значит <tex>\overline L \in NPC</tex>. | Получили, что <tex>\overline L \in NP</tex> и <tex>\forall L_1 \in NP \, L_1 \le \overline L</tex>. Значит <tex>\overline L \in NPC</tex>. | ||
Версия 15:30, 27 апреля 2012
| Лемма (1): |
| Доказательство: |
|
Пусть . Тогда и . Рассмотрим произвольный язык . Тогда . Так как , то , следовательно . Получили, что и . Значит . В обратную сторону доказательство аналогично. |
| Определение: |
| — булева формула . |
| Лемма (2): |
| Доказательство: |
| , то есть . Тогда по лемме (1) . |
| Определение: |
| полином . |
| Теорема (Махэни, light): |
| Доказательство: |
|
Пусть существует . Разрешим за полином. Для начала напишем программу, разрешающую : if return if return 0 if return 1 return Ответом будет . Так как и , то , то есть . Поэтому, если в предыдущей программе заменить все обращения к , на , то полученная программа по прежнему будет разрешать . Оценим необходимый размер . Можно считать, что , где , а — монотонно возрастающий полином. Тогда . Так как , то , где — полином. Можно считать, что монотонно возрастает. Тогда размер можно оценить сверху: , где — полином. if //(1) return if return 0 if return 1 //(2) if exit return Рассмотрим двоичное дерево, получающееся в результате рекурсивных вызовов данной программы. Рассмотрим произвольный элемент . Заметим, что условие в ходе выполнения программы является ложным при обращении к элементу не более одного раза. Так как всего в не более элементов, то суммарно за все время выполнения программы условие принимает ложное значение не более раз. Отсюда следует, что присваивание выполняется не более раз, а значит в дереве не более внутренних вершин. Значит всего в дереве не более вершин, то есть данная программа работает за полиномиальное время. Итого, данная программа разрешает за полиномиальное время. А так как , то , то есть , откуда . |