Сложностные классы. Вычисления с оракулом — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 6: Строка 6:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
<tex>DTIME(f(n)) = \{ L \mid \exists </tex> программа <tex>p : L(p)=L,</tex> для любого <tex>x</tex>, такого что <tex>|x| = n</tex>, где n — длина входа и <tex>Time(p,x) = O( f(n)) \}</tex>.
+
<tex>DTIME(f(n)) = \{ L \mid \exists </tex> программа <tex>p : L(p)=L,</tex> для любого <tex>x</tex>, такого что <tex>|x| = n</tex>, где n — длина входа и <tex>Time(p,x) = O(f(n)) \}</tex>.
 
}}
 
}}
 
{{Определение
 
{{Определение
Строка 16: Строка 16:
  
 
== Вычисление с оракулом ==
 
== Вычисление с оракулом ==
Сложностный класс задач, решаемых алгоритмом из класса <tex>A</tex> с оракулом для языка <tex>B</tex> обозначают <tex>A^B</tex>. Так же <tex>A</tex> называют сложностным классом с доступом к оракулу <tex>B</tex>.
+
{{Определение
Если <tex>B</tex> — это множество языков, то <tex>A^B =\bigcup\limits_{D \in B}A^D</tex>, где <tex>D</tex> — язык из <tex>B</tex>.
+
|definition=
 +
Оракул — программа <tex>A(x)</tex>, вычислющая за <tex>O(1)</tex> верно ли, что <tex>x \in A</tex>.
 +
}}
 +
Сложностный класс задач, решаемых алгоритмом из класса <tex>C</tex> с оракулом для языка <tex>A</tex> обозначают <tex>C^A</tex>. Так же <tex>C</tex> называют сложностным классом с доступом к оракулу <tex>A</tex>.
 +
Если <tex>A</tex> — это множество языков, то <tex>C^A =\bigcup\limits_{D \in A}C^D</tex>, где <tex>D</tex> — язык из <tex>A</tex>.

Версия 20:44, 7 мая 2012

В начале 1960-х годов, в связи с началом широкого использования вычислительной техники для решения практических задач, возник вопрос о границах практической применимости данного алгоритма решения задачи в смысле ограничений на ее размерность. Какие задачи могут быть решены на ЭВМ за реальное время?

Ответ на этот вопрос был дан в работах Кобмена (Alan Cobham, 1964), и Эдмнодса (Jack Edmonds, 1965), где были введены сложностные классы задач. К ним относятся классы P, NP и т.д.

Для начала введем понятия [math]DTIME[/math] и [math]DSPACE[/math], аналогичным образом определяются классы [math]NSPACE[/math] и [math]NTIME[/math] (префикс [math]D[/math] соответствует детерминизму, а [math]N[/math] — недетерминизму).

Определение:
[math]DTIME(f(n)) = \{ L \mid \exists [/math] программа [math]p : L(p)=L,[/math] для любого [math]x[/math], такого что [math]|x| = n[/math], где n — длина входа и [math]Time(p,x) = O(f(n)) \}[/math].


Определение:
[math]DSPACE(f(n)) = \{ L \mid \exists [/math] программа [math]p : L(p)=L,[/math] для любого [math]x[/math], такого что [math]|x| = n[/math], где n — длина входа и [math]Space(p,x) = O(f(n)) \}[/math].


Через понятия классов [math]DSPACE[/math], [math]DTIME[/math], [math]NSPACE[/math] и [math]NTIME[/math] будет дано определение многим сложностным классам, в том числе классов P и NP.

Вычисление с оракулом

Определение:
Оракул — программа [math]A(x)[/math], вычислющая за [math]O(1)[/math] верно ли, что [math]x \in A[/math].

Сложностный класс задач, решаемых алгоритмом из класса [math]C[/math] с оракулом для языка [math]A[/math] обозначают [math]C^A[/math]. Так же [math]C[/math] называют сложностным классом с доступом к оракулу [math]A[/math]. Если [math]A[/math] — это множество языков, то [math]C^A =\bigcup\limits_{D \in A}C^D[/math], где [math]D[/math] — язык из [math]A[/math].