Теоремы о коллапсе полиномиальной иерархии — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Теорема о коллапсе полиномиальной иерархии при совпадении \Sigma_i и \Sigma_{i+1})
(Теорема о коллапсе полиномиальной иерархии при совпадении \Sigma_i и \Pi_i)
Строка 21: Строка 21:
 
|statement = Если существует <tex>i > 0\colon \Sigma_i = \Pi_i</tex>, то <tex>\Sigma_i = PH</tex>.
 
|statement = Если существует <tex>i > 0\colon \Sigma_i = \Pi_i</tex>, то <tex>\Sigma_i = PH</tex>.
 
|proof =  
 
|proof =  
Для доказательства теоремы достаточно показать, что <tex>\Sigma_i = \Sigma_{i+1}</tex>. Тогда по предыдущей теореме <tex>\Sigma_i = PH</tex>.<br/>
+
Для доказательства покажем, что <tex>\Sigma_i = \Sigma_{i+1}</tex> и воспользуемся предыдущей теоремой.
 +
 
 
Рассмотрим язык <tex>L \in \Sigma_{i+1}</tex>. Тогда слово <tex>x \in L \Leftrightarrow \exists y_1 \forall y_2 \ldots Q y_{i+1} R(x, y_1 \ldots y_{i+1})</tex>. Обозначим <tex>\forall y_2 \exists y_3 \ldots Q y_{i+1} R(x, y_1 \ldots y_{i+1}) = f(x, y_1)</tex>. Получим язык <tex>L_f = \{ \langle x, y_1 \rangle \colon f(x, y_1) = 1\}</tex>.<br>
 
Рассмотрим язык <tex>L \in \Sigma_{i+1}</tex>. Тогда слово <tex>x \in L \Leftrightarrow \exists y_1 \forall y_2 \ldots Q y_{i+1} R(x, y_1 \ldots y_{i+1})</tex>. Обозначим <tex>\forall y_2 \exists y_3 \ldots Q y_{i+1} R(x, y_1 \ldots y_{i+1}) = f(x, y_1)</tex>. Получим язык <tex>L_f = \{ \langle x, y_1 \rangle \colon f(x, y_1) = 1\}</tex>.<br>
 
Тогда <tex>L_f \in \Pi_i</tex>, и из условия теоремы <tex>L_f \in \Sigma_i</tex>.<br/>
 
Тогда <tex>L_f \in \Pi_i</tex>, и из условия теоремы <tex>L_f \in \Sigma_i</tex>.<br/>
По определению сложностного класса <tex>\Sigma_i \; \exists R_1 \colon \langle x, y_1 \rangle \in L_f \Leftrightarrow \exists y_2 \forall y_3 \ldots Q y_{i+1} R_1(\langle x, y_1 \rangle, y_2 \ldots y_{i+1})</tex>. Тогда
+
По определению сложностного класса <tex>\Sigma_i \; \exists R_1 \colon \langle x, y_1 \rangle \in L_f \Leftrightarrow \exists y_2 \forall y_3 \ldots Q y_{i+1} R_1(\langle x, y_1 \rangle, y_2 \ldots y_{i+1})</tex>. Тогда <tex>x \in L \Leftrightarrow \exists \langle y_1, y_2 \rangle \forall y_3 \ldots Q y_{i+1} R_1(x, \langle y_1, y_2\rangle \ldots y_{i+1})</tex>. Значит, <tex>L \in \Sigma_i</tex>.
<tex>x \in L \Leftrightarrow \exists \langle y_1, y_2 \rangle \forall y_3 \ldots Q y_{i+1} R_1(x, \langle y_1, y_2\rangle \ldots y_{i+1})</tex>. Значит, <tex>L \in \Sigma_i</tex>. То есть <tex>\Sigma_i = \Sigma_{i+1}</tex>.
 
 
}}
 
}}
  
 
== См. также ==
 
== См. также ==
 
*[[Классы PH, Σ и Π]]
 
*[[Классы PH, Σ и Π]]

Версия 13:16, 8 мая 2012

Лемма:
Если [math]\Sigma_i = \Sigma_{i+1}[/math], то [math]\Pi_i = \Pi_{i+1}[/math].
Доказательство:
[math]\triangleright[/math]
[math]L \in \Pi_{i+1} \Leftrightarrow \overline{L} \in \Sigma_{i+1} \Leftrightarrow \overline{L} \in \Sigma_i \Leftrightarrow L \in \Pi_i[/math].
[math]\triangleleft[/math]

Теорема о коллапсе полиномиальной иерархии при совпадении [math]\Sigma_i[/math] и [math]\Sigma_{i+1}[/math]

Теорема:
Если существует [math]i \colon \Sigma_i = \Sigma_{i+1}[/math], то [math]\Sigma_i = PH[/math].
Доказательство:
[math]\triangleright[/math]

Для доказательства теоремы достаточно показать, что если такое [math]i[/math] существует, то [math]\forall j \gt i[/math] верно, что [math]\Sigma_i = \Sigma_j[/math].
Докажем по индукции.
База. [math]\Sigma_i = \Sigma_{i+1}[/math] из условия.
Индукционный переход. Докажем, что если [math]\Sigma_n = \Sigma_{n+1}[/math], то [math]\Sigma_{n+1} = \Sigma_{n+2}[/math].
Рассмотрим язык [math]L \in \Sigma_{n+2}[/math]. [math]L = \{x | \exists y_1 \forall y_2 \ldots Q y_{n+2} R_L^{n+2}(x, y_1 \ldots y_{n+2})\}[/math]. Обозначим [math]\forall y_2 \ldots Q y_{n+2} R_L^{n+2}(x, y_1 \ldots y_{n+2}) = f(x, y_1)[/math]. Тогда получим язык [math]L_f = \{\langle x, y_1\rangle | f(x, y_1) = 1\}[/math].
Заметим, что [math]L_f \in \Pi_{n+1}[/math] и из вышедоказанной леммы следует, что [math]L_f \in \Pi_n[/math].

Из определения сложностного класса [math]\Pi_n[/math] получаем, что [math]\exists R_{L_f}^{n} \colon \langle x, y_1 \rangle \in L_f \Leftrightarrow \forall y_2 \exists y_3 \ldots Q y_{n+1} R_{L_f}^{n}(\langle x, y_1\rangle, y_2 \ldots y_{n+1})[/math]. Следовательно, [math]x \in L \Leftrightarrow \exists y_1 \forall y_2 \ldots Q y_{n+1} R_{L_f}^{n}(\langle x, y_1\rangle, y_2 \ldots y_{n+1})[/math]. То есть язык [math]L \in \Sigma_{n+1}[/math].
[math]\triangleleft[/math]

Теорема о коллапсе полиномиальной иерархии при совпадении [math]\Sigma_i[/math] и [math]\Pi_i[/math]

Теорема:
Если существует [math]i \gt 0\colon \Sigma_i = \Pi_i[/math], то [math]\Sigma_i = PH[/math].
Доказательство:
[math]\triangleright[/math]

Для доказательства покажем, что [math]\Sigma_i = \Sigma_{i+1}[/math] и воспользуемся предыдущей теоремой.

Рассмотрим язык [math]L \in \Sigma_{i+1}[/math]. Тогда слово [math]x \in L \Leftrightarrow \exists y_1 \forall y_2 \ldots Q y_{i+1} R(x, y_1 \ldots y_{i+1})[/math]. Обозначим [math]\forall y_2 \exists y_3 \ldots Q y_{i+1} R(x, y_1 \ldots y_{i+1}) = f(x, y_1)[/math]. Получим язык [math]L_f = \{ \langle x, y_1 \rangle \colon f(x, y_1) = 1\}[/math].
Тогда [math]L_f \in \Pi_i[/math], и из условия теоремы [math]L_f \in \Sigma_i[/math].

По определению сложностного класса [math]\Sigma_i \; \exists R_1 \colon \langle x, y_1 \rangle \in L_f \Leftrightarrow \exists y_2 \forall y_3 \ldots Q y_{i+1} R_1(\langle x, y_1 \rangle, y_2 \ldots y_{i+1})[/math]. Тогда [math]x \in L \Leftrightarrow \exists \langle y_1, y_2 \rangle \forall y_3 \ldots Q y_{i+1} R_1(x, \langle y_1, y_2\rangle \ldots y_{i+1})[/math]. Значит, [math]L \in \Sigma_i[/math].
[math]\triangleleft[/math]

См. также