Идеальное хеширование — различия между версиями
(→Вставка) |
Rybak (обсуждение | вклад) м (→Ссылки) |
||
Строка 124: | Строка 124: | ||
==Ссылки== | ==Ссылки== | ||
− | * [http://en.wikipedia.org/wiki/Double_hashing Wikipedia | + | * [http://en.wikipedia.org/wiki/Double_hashing Wikipedia {{---}} Double_hashing] |
* [http://rain.ifmo.ru/cat/view.php/vis/hashtables/hash-2001-2 Пример хеш таблицы] | * [http://rain.ifmo.ru/cat/view.php/vis/hashtables/hash-2001-2 Пример хеш таблицы] | ||
* [http://research.cs.vt.edu/AVresearch/hashing/double.php Пример хеш таблицы с двойным хешированием] | * [http://research.cs.vt.edu/AVresearch/hashing/double.php Пример хеш таблицы с двойным хешированием] |
Версия 01:17, 13 мая 2012
Двойное хеширование — метод борьбы с коллизиями, возникающими при закрытом хешировании, основанный на использовании двух хеш-функций для построения различных последовательностей исследования хеш-таблицы.
Содержание
Принцип двойного хеширования
При двойном хешировании используются две независимые хеш-функции
и . Пусть — это наш ключ, — размер нашей таблицы, — остаток от деления на , тогда сначала исследуется ячейка с адресом , если она уже занята, то рассматривается , затем и так далее. В общем случае идёт проверка последовательности ячеек гдеТаким образом, операции вставки, удаления и поиска в лучшем случае выполняются за линейного разрешения коллизий. Однако в среднем, при грамотном выборе хеш-функций, двойное хеширование будет выдавать лучшие результаты, за счёт того, что вероятность совпадения значений сразу двух независимых хеш-функций ниже, чем одной.
, в худшем — за , что не отличается от обычного
Выбор хеш-функций
может быть обычной хеш-функцией. Однако чтобы последовательность исследования могла охватить всю таблицу, должна возвращать значения:
- не равные
- независимые от
- взаимно простые с величиной хеш-таблицы
Есть два удобных способа это сделать. Первый состоит в том, что в качестве размера таблицы используется простое число, а
возвращает натуральные числа, меньшие . Второй — размер таблицы является степенью двойки, а возвращает нечетные значения.Например, если размер таблицы равен
, то в качестве можно использовать функцию видаПример
Показана хеш-таблица размером 13 ячеек, в которой используются вспомогательные функции:
Мы хотим вставить ключ 14. Изначально
. Тогда . Но ячейка с индексом 1 занята, поэтому увеличиваем на 1 и пересчитываем значение хеш-функции. Делаем так, пока не дойдем до пустой ячейки. При получаем . Ячейка с номером 9 свободна, значит записываем туда наш ключ.Таким образом, основная особенность двойного хеширования состоит в том, что при различных
пара дает различные последовательности ячеек для исследования.Простая реализация
Пусть у нас есть некоторый объект
, в котором определено поле , от которого можно вычислить хеш-функции иТак же у нас есть таблица
величиной , состоящая из объектов типа .Вставка
add(item) x = h1(item.key) y = h2(item.key) for (i = 0; i < m; i++) if table[x] == null table[x] = item return x = (x + y) mod m table.resize() //ошибка, требуется увеличить размер таблицы
Поиск
search(key) x = h1(key) y = h2(key) for (i = 0; i < m; i++) if table[x] != null if table[x].key == key return table[x] else return null x = (x + y) mod m return null
Реализация с удалением
Что бы наша хеш-таблица поддерживала удаление, требуется добавить массив
типов , равный по величине массиву . Теперь при удалении мы просто будем помечать наш объект как удалённый, а при добавлении как не удалённый и замещать новым добавляемым объектом. При поиске, помимо равенства ключей, мы смотрим, удалён ли элемент, если да, то идём дальше.Вставка
add(item) x = h1(item.key) y = h2(item.key) for (i = 0; i < m; i++) if table[x] == null || deleted[x] table[x] = item deleted[x] = false return x = (x + y) mod m table.resize() //ошибка, требуется увеличить размер таблицы
Поиск
search(key) x = h1(key) y = h2(key) for (i = 0; i < m; i++) if table[x] != null if table[x].key == key && !deleted[x] return table[x] else return null x = (x + y) mod m return null
Удаление
remove(key) x = h1(key) y = h2(key) for (i = 0; i < m; i++) if table[x] != null if table[x].key == key deleted[x] = true else return x = (x + y) mod m
См. также
Литература
- Бакнелл Дж. М. Фундаментальные алгоритмы и структуры данных в Delphi, 2003
- Кнут Д. Э. Искусство программирования, том 3. Сортировка и поиск, 2-е издание, 2000
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. Алгоритмы. Построение и анализ, 2010
- Седжвик Р. Фундаментальные алгоритмы на C. Части 1-4. Анализ. Структуры данных. Сортировка. Поиск, 2003