Интерактивные протоколы. Класс IP. Класс AM — различия между версиями
Воронов (обсуждение | вклад) |
Воронов (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
− | Интерактивным протоколом называется абстрактная машина, моделирующая вычисления как обмен сообщениями между двумя программами (<tex>Prover</tex> и <tex>Verifier</tex>), такими, что | + | <b>Интерактивным протоколом</b>, разрешающим язык <tex>L</tex>, называется абстрактная машина (см. рис. 1), моделирующая вычисления как обмен сообщениями между двумя программами (<tex>Prover</tex> и <tex>Verifier</tex>, далее <tex>P</tex> и <tex>V</tex> соответственно), такими, что |
− | # <tex> | + | # <tex>P</tex> убеждает <tex>V</tex> в том, что слово <tex>x</tex> принадлежит языку; |
− | # <tex> | + | # <tex>P</tex> не ограничен в вычислительной мощности; |
− | # <tex> | + | # <tex>V</tex> — вероятностная машина Тьюринга; |
− | # <tex> | + | # <tex>V</tex> ограничен полиномиальным временем работы. |
}} | }} | ||
− | + | [[Файл:IPS.png|250px|thumb|right|Рис. 1. Схема интерактивного протокола.]] | |
− | Интерактивные протоколы делятся на два типа в зависимости от доступа <tex>P</tex> к вероятностной ленте <tex>V</tex> | + | Интерактивные протоколы делятся на два типа в зависимости от доступа <tex>P</tex> к вероятностной ленте <tex>V</tex>: |
+ | # <b> public coins </b> — <tex>P</tex> может видеть вероятностную ленту <tex>V</tex>; | ||
+ | # <b> private coins </b> — <tex>P</tex> <b>не</b> может видеть вероятностную ленту <tex>V</tex>. | ||
{{Определение | {{Определение | ||
Строка 21: | Строка 23: | ||
# число раундов интерактивного протокола <tex> O(f(n)), n = |x| </tex><br/> | # число раундов интерактивного протокола <tex> O(f(n)), n = |x| </tex><br/> | ||
}} | }} | ||
+ | |||
+ | {{Определение | ||
+ | |definition = | ||
+ | Если для интерактивного протокола выполняется <tex> \forall x \in L \Rightarrow P(V(x) = 1) = 1 </tex>, то говорят, что он обладает свойством <b> completeness </b> (его можно достичь). | ||
+ | }} | ||
+ | |||
+ | {{Определение | ||
+ | |definition = | ||
+ | Если для интерактивного протокола выполняется <tex> \forall x \notin L \Rightarrow P(V(x) = 1) = 0 </tex>, то говорят, что он обладает свойством <b> soundness </b> (его нельзя достичь достичь). | ||
+ | }} | ||
{{Теорема | {{Теорема |
Версия 23:03, 31 мая 2012
Класс IP
Определение: |
Интерактивным протоколом, разрешающим язык
| , называется абстрактная машина (см. рис. 1), моделирующая вычисления как обмен сообщениями между двумя программами ( и , далее и соответственно), такими, что
Интерактивные протоколы делятся на два типа в зависимости от доступа
к вероятностной ленте :- public coins — может видеть вероятностную ленту ;
- private coins — не может видеть вероятностную ленту .
Определение: |
|
Определение: |
Если для интерактивного протокола выполняется | , то говорят, что он обладает свойством completeness (его можно достичь).
Определение: |
Если для интерактивного протокола выполняется | , то говорят, что он обладает свойством soundness (его нельзя достичь достичь).
Теорема: |
Доказательство: |
Это очевидным образом следует из определений | и в ; даже не требуется общаться с .
Теорема: |
Доказательство: |
будет проверять на принадлежность слова используя сертификат, который он запросит у . Так как неограничен в вычислительной мощности, он может подобрать подходящий сертификат и именно его и сообщит, так как он заинтересован в том, чтобы принял слово. Для этого требуется лишь один раунд интерактивного протокола, что и доказывает теорему. |