Теорема Сэвича. Совпадение классов NPS и PS — различия между версиями
Leugenea (обсуждение | вклад) м (→Определение) |
Shevchen (обсуждение | вклад) м |
||
| Строка 53: | Строка 53: | ||
Рассмотрим машину Тьюринга <tex>m</tex>, распознающую язык <tex>L</tex>. Эта машина может иметь <tex>2^{df(n)}</tex> конфигураций. Объясняется это следующим образом. Пусть <tex>m</tex> имеет <tex>c</tex> состояний и <tex>g</tex> символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте <tex>g^{f(n)}</tex>. Головка на входной ленте может быть в одной из <tex>n</tex> позиций и в одной из <tex>f(n)</tex> на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает <tex>cnf(n)g^{f(n)}=2^{\log c + \log n + \log (f(n)) + f(n) \log g}=2^{O(f(n))}</tex>. | Рассмотрим машину Тьюринга <tex>m</tex>, распознающую язык <tex>L</tex>. Эта машина может иметь <tex>2^{df(n)}</tex> конфигураций. Объясняется это следующим образом. Пусть <tex>m</tex> имеет <tex>c</tex> состояний и <tex>g</tex> символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте <tex>g^{f(n)}</tex>. Головка на входной ленте может быть в одной из <tex>n</tex> позиций и в одной из <tex>f(n)</tex> на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает <tex>cnf(n)g^{f(n)}=2^{\log c + \log n + \log (f(n)) + f(n) \log g}=2^{O(f(n))}</tex>. | ||
| − | Рассмотрим функцию, которая по заданному слову <tex>x</tex> проверяет его принадлежность | + | Рассмотрим функцию, которая по заданному слову <tex>x</tex> проверяет его принадлежность языку <tex>L</tex>: |
'''Check'''(x, L): | '''Check'''(x, L): | ||
Версия 20:15, 4 июня 2012
Содержание
Класс PS
Определение
| Определение: |
| — класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера. . |
| Определение: |
| — класс языков, разрешимых на недетерминированной машине Тьюринга с использованием памяти полиномиального размера. . |
Связь класса PS с другими классами теории сложности
| Теорема: |
. |
| Доказательство: |
| Рассмотрим любой язык из . Так как , то существует машина Тьюринга , распознающая за полиномиальное время. Это значит, что не сможет использовать более, чем полиномиальное количество памяти, следовательно . |
| Теорема: |
. |
| Доказательство: |
| Рассмотрим любой язык из . Так как , то существует программа-верификатор , что для каждого слова из (и только для них) существует такой сертификат полиномиальной длины, что допускает слово и сертификат. Тогда, чтобы проверить принадлежность слова языку, мы можем перебрать все сертификаты полиномиальной длины. Для этого необходим полиномиальный размер памяти. Из этого следует, что . |
Теорема Сэвича
| Теорема: |
Для любой справедливо: . То есть, если недетерминированная машина Тьюринга может решить проблему, используя памяти, то существует детерминированная машина Тьюринга, которая решает эту же проблему, используя не больше, чем памяти. |
| Доказательство: |
|
Рассмотрим машину Тьюринга с входной и рабочей лентой. Ее конфигурацию можно закодировать так: закодировать позицию и содержание рабочей ленты (займет памяти), позицию входной ленты (займет памяти). Так как , то размер конфигурации составит . Пусть . Тогда существует недетерминированная машина Тьюринга, распознающая этот язык. Reach(I, J, k):
if (k = 0)
return (I J) or (I = J)
// запись (I J) означает возможность перехода МТ из конфигурации I в конфигурацию J за один шаг
else
for (Y) // перебор промежуточных конфигураций
if Reach(I, Y, k-1) and Reach(Y, J, k-1)
return true
return false
Эта функция имеет глубину рекурсии , на каждом уровне рекурсии использует памяти для хранения текущих конфигураций. Рассмотрим машину Тьюринга , распознающую язык . Эта машина может иметь конфигураций. Объясняется это следующим образом. Пусть имеет состояний и символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте . Головка на входной ленте может быть в одной из позиций и в одной из на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает . Рассмотрим функцию, которая по заданному слову проверяет его принадлежность языку : Check(x, L):
for (T) // перебор конфигураций, которые содержат допускающие состояния
if Reach(S, T, )
return true
return false
Если слово принадлежит языку, то оно будет допущено, так как будут рассмотрены все возможные пути допуска. Это обеспечивается указанной нам глубиной рекурсии для функции . И если слово не допускается за шагов (количество всех возможных конфигураций), то оно уже гарантированно не может быть допущено. В итоге функция имеет глубину рекурсии , на каждом уровне рекурсии используется памяти. Тогда всего эта функция использует памяти. |
Следствие
Вывод
.
Известно, что . Так что хотя бы одно из рассмотренных включений — строгое, но неизвестно, какое. Принято считать, что все приведенные выше включения — строгие.
Источники
- Michael Sipser. Introduction to the theory of computation.