Теорема Ладнера — различия между версиями
Shevchen (обсуждение | вклад) м (Добавил шаблон «теорема») |
Shevchen (обсуждение | вклад) м (Добавил некоторые ссылки) |
||
Строка 1: | Строка 1: | ||
− | '''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий NP, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]]. | + | '''Теорема Ладнера''' (Ladner's Theorem) утверждает, что если [[Класс P|P]] не совпадает с [[Класс NP|NP]], то существует язык, принадлежащий <tex>\mathrm{NP}</tex>, но не являющийся ни полиномиальным, ни [[NP-полнота|NP-полным]]. |
{{Теорема | {{Теорема | ||
Строка 6: | Строка 6: | ||
<tex>\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \emptyset</tex> | <tex>\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \emptyset</tex> | ||
|proof= | |proof= | ||
− | Предположим, что <tex>\mathrm{P} \neq \mathrm{NP}</tex>. Из этого следует, что никакой <tex>\mathrm{NP}</tex>-полный язык (например, | + | Предположим, что <tex>\mathrm{P} \neq \mathrm{NP}</tex>. Из этого следует, что никакой <tex>\mathrm{NP}</tex>-полный язык (например, [[Примеры NP-полных_языков. Теорема_Кука#NP-полнота_2|SAT]]) нельзя [[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|свести по Карпу]] к полиномиальному. Будем искать такой язык <tex>A</tex>, чтобы язык <tex>L = \mathrm{SAT} \cap A</tex> удовлетворял следующим условиям: |
# <tex>L \in \mathrm{NP}</tex> (для этого достаточно, чтобы выполнялось <tex>A \in \mathrm{P}</tex>); | # <tex>L \in \mathrm{NP}</tex> (для этого достаточно, чтобы выполнялось <tex>A \in \mathrm{P}</tex>); |
Версия 12:55, 3 июня 2012
Теорема Ладнера (Ladner's Theorem) утверждает, что если P не совпадает с NP, то существует язык, принадлежащий , но не являющийся ни полиномиальным, ни NP-полным.
Теорема (Ладнер): |
Доказательство: |
Предположим, что SAT) нельзя свести по Карпу к полиномиальному. Будем искать такой язык , чтобы язык удовлетворял следующим условиям: . Из этого следует, что никакой -полный язык (например,
Если выполнены все три свойства, то .Пусть — все машины Тьюринга из , причём для любого .Пусть — аналогичное множество полиномиальных функций: для любого .Для простоты будем считать, что . Построим такую неубывающую функцию , что для выполняются три названных свойства.ПостроениеОпределим рекурсивно. Положим .Для :
Иначе ; значения для уже известны.
for: if and ( or return if and ( and return
for: if and ( or , return if and ( and , return Корректность алгоритмаПроверим выполнение второго и третьего свойств языка .
Таким образом, при верности предположения второе и третье свойства выполнены.Время работы алгоритмаПроверим первое свойство — полиномиальность языка .Пусть — время вычисления .Заметим, что по построению для .Время выполнения шагов составляет:
, где — время нахождения произведения чисел и
Таким образом,
Пусть . Существует константа , для которой при любом верноТогда, в силу и неравенства выше, по индукции легко доказать, что ограничено сверху , то есть , а, в свою очередь, . |
Источник
- William Gasarch, Lance Fortnow. Two Proofs of Ladner’s Theorem