Теорема Ладнера — различия между версиями
Shevchen (обсуждение | вклад) м (Добавил некоторые ссылки) |
Shevchen (обсуждение | вклад) м (Подправил формулы) |
||
Строка 4: | Строка 4: | ||
|author=Ладнер | |author=Ладнер | ||
|statement= | |statement= | ||
− | <tex>\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \ | + | <tex>\mathrm{P} \neq \mathrm{NP} \Rightarrow \mathrm{NP} \setminus (\mathrm{P} \cup \mathrm{NPC}) \neq \varnothing</tex> |
|proof= | |proof= | ||
Предположим, что <tex>\mathrm{P} \neq \mathrm{NP}</tex>. Из этого следует, что никакой <tex>\mathrm{NP}</tex>-полный язык (например, [[Примеры NP-полных_языков. Теорема_Кука#NP-полнота_2|SAT]]) нельзя [[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|свести по Карпу]] к полиномиальному. Будем искать такой язык <tex>A</tex>, чтобы язык <tex>L = \mathrm{SAT} \cap A</tex> удовлетворял следующим условиям: | Предположим, что <tex>\mathrm{P} \neq \mathrm{NP}</tex>. Из этого следует, что никакой <tex>\mathrm{NP}</tex>-полный язык (например, [[Примеры NP-полных_языков. Теорема_Кука#NP-полнота_2|SAT]]) нельзя [[Сведение относительно класса функций. Сведение по Карпу. Трудные и полные задачи|свести по Карпу]] к полиномиальному. Будем искать такой язык <tex>A</tex>, чтобы язык <tex>L = \mathrm{SAT} \cap A</tex> удовлетворял следующим условиям: | ||
Строка 18: | Строка 18: | ||
Пусть <tex>f_1, \ldots, f_n, \ldots</tex> — аналогичное множество полиномиальных функций: <tex>T(f_i(x)) \le |x|^i</tex> для любого <tex>x \in \Sigma^*</tex>. | Пусть <tex>f_1, \ldots, f_n, \ldots</tex> — аналогичное множество полиномиальных функций: <tex>T(f_i(x)) \le |x|^i</tex> для любого <tex>x \in \Sigma^*</tex>. | ||
− | Для простоты будем считать, что <tex>|\Sigma| = 2</tex>. Построим такую ''неубывающую'' функцию <tex>g \in \tilde{\mathrm{P}}</tex>, что для <tex>A = \{x \in \Sigma^*: g(|x|) \ | + | Для простоты будем считать, что <tex>|\Sigma| = 2</tex>. Построим такую ''неубывающую'' функцию <tex>g \in \tilde{\mathrm{P}}</tex>, что для <tex>A = \{x \in \Sigma^*: g(|x|) \equiv 0 \pmod{2} \}</tex> выполняются три названных свойства. |
=== Построение <tex>g</tex> === | === Построение <tex>g</tex> === | ||
Строка 32: | Строка 32: | ||
* <tex>g(n) = 2i</tex>. | * <tex>g(n) = 2i</tex>. | ||
for <tex>x</tex> : <tex>|x| \le \log_2 n</tex> | for <tex>x</tex> : <tex>|x| \le \log_2 n</tex> | ||
− | if <tex>M_i(x)</tex> and | + | if <tex>M_i(x)</tex> and <tex>[g(|x|) \equiv 1 \pmod{2}</tex> or <tex>x \not \in \mathrm{SAT}]</tex> |
<tex>g(n+1) := g(n)+1</tex> | <tex>g(n+1) := g(n)+1</tex> | ||
return | return | ||
− | if <tex>! M_i(x)</tex> and | + | if <tex>! M_i(x)</tex> and <tex>[g(|x|) \equiv 0 \pmod{2}</tex> and <tex>x \in \mathrm{SAT}]</tex> |
<tex>g(n+1) := g(n)+1</tex> | <tex>g(n+1) := g(n)+1</tex> | ||
return | return | ||
Строка 42: | Строка 42: | ||
* <tex>g(n) = 2i + 1</tex>. | * <tex>g(n) = 2i + 1</tex>. | ||
for <tex>x</tex> : <tex>|x| \le \log_2 n, |f_i(x)| \le \log_2 n</tex> | for <tex>x</tex> : <tex>|x| \le \log_2 n, |f_i(x)| \le \log_2 n</tex> | ||
− | if <tex>x \in \mathrm{SAT}</tex> and | + | if <tex>x \in \mathrm{SAT}</tex> and <tex>[g(|x|) \equiv 1 \pmod{2}</tex> or <tex>f_i(x) \not \in \mathrm{SAT}]</tex> |
− | <tex>g(n+1) := g(n)+1</tex> | + | <tex>g(n+1) := g(n)+1</tex> |
− | if <tex>x \not \in \mathrm{SAT}</tex> and | + | return |
− | <tex>g(n+1) := g(n)+1</tex> | + | if <tex>x \not \in \mathrm{SAT}</tex> and <tex>[g(|x|) \equiv 0 \pmod{2}</tex> and <tex>f_i(x) \in \mathrm{SAT}]</tex> |
+ | <tex>g(n+1) := g(n)+1</tex> | ||
+ | return | ||
<tex>g(n+1) := g(n)</tex> | <tex>g(n+1) := g(n)</tex> | ||
Строка 54: | Строка 56: | ||
* Пусть <tex>g(n)</tex> не имеет предела при <tex>n \to \infty</tex>. Значит, для любой <tex>M_i</tex> в <tex>L</tex> существует элемент, на котором <tex>M_i</tex> «ошибается»; аналогично, для любой полиномиальной функции <tex>f_i</tex> существует элемент, на котором <tex>f_i</tex> неверно сводит <tex>\mathrm{SAT}</tex> к <tex>L</tex>. Оба свойства выполнены. | * Пусть <tex>g(n)</tex> не имеет предела при <tex>n \to \infty</tex>. Значит, для любой <tex>M_i</tex> в <tex>L</tex> существует элемент, на котором <tex>M_i</tex> «ошибается»; аналогично, для любой полиномиальной функции <tex>f_i</tex> существует элемент, на котором <tex>f_i</tex> неверно сводит <tex>\mathrm{SAT}</tex> к <tex>L</tex>. Оба свойства выполнены. | ||
− | * Пусть <tex>\lim\limits_{n \to \infty} g(n) = 2i</tex>. Значит, в нашем множестве существует такая машина Тьюринга <tex>M_i</tex>, распознающая <tex>L</tex>, что <tex>\forall x \Rightarrow M_i(x) = [g(|x|) \ | + | * Пусть <tex>\lim\limits_{n \to \infty} g(n) = 2i</tex>. Значит, в нашем множестве существует такая машина Тьюринга <tex>M_i</tex>, распознающая <tex>L</tex>, что <tex>\forall x \Rightarrow M_i(x) = [g(|x|) \equiv 0 \pmod{2} \wedge x \in \mathrm{SAT}]</tex>. С одной стороны, <tex>M_i</tex> работает за полином, и <tex>L \in \mathrm{P}</tex>. С другой стороны, по определению <tex>A</tex>, <tex>L</tex> различается с <tex>\mathrm{SAT}</tex> в конечном числе элементов, значит <tex>\mathrm{SAT} \le L</tex>. Получено противоречие с предположением <tex>\mathrm{P} \neq \mathrm{NP}</tex>. |
− | * Пусть <tex>\lim\limits_{n \to \infty} g(n) = 2i + 1</tex>. Тогда в нашем множестве полиномиальных функций существует <tex>f_i : \forall x \Rightarrow [x \in SAT] = [g(|f_i(x)|) \ | + | * Пусть <tex>\lim\limits_{n \to \infty} g(n) = 2i + 1</tex>. Тогда в нашем множестве полиномиальных функций существует <tex>f_i : \forall x \Rightarrow [x \in SAT] = [g(|f_i(x)|) \equiv 0 \pmod{2} \wedge f_i(x) \in \mathrm{SAT}]</tex>. С одной стороны, <tex>\mathrm{SAT} \le L</tex> с помощью <tex>f_i</tex>. С другой стороны, из определения <tex>A</tex> выходит, что язык <tex>L</tex> конечен, значит <tex>L \in \mathrm{P}</tex>. Снова получено противоречие с предположением. |
Таким образом, при верности предположения <tex>\mathrm{P} \neq \mathrm{NP}</tex> второе и третье свойства <tex>L</tex> выполнены. | Таким образом, при верности предположения <tex>\mathrm{P} \neq \mathrm{NP}</tex> второе и третье свойства <tex>L</tex> выполнены. |
Версия 13:26, 3 июня 2012
Теорема Ладнера (Ladner's Theorem) утверждает, что если P не совпадает с NP, то существует язык, принадлежащий , но не являющийся ни полиномиальным, ни NP-полным.
Теорема (Ладнер): |
Доказательство: |
Предположим, что SAT) нельзя свести по Карпу к полиномиальному. Будем искать такой язык , чтобы язык удовлетворял следующим условиям: . Из этого следует, что никакой -полный язык (например,
Если выполнены все три свойства, то .Пусть — все машины Тьюринга из , причём для любого .Пусть — аналогичное множество полиномиальных функций: для любого .Для простоты будем считать, что . Построим такую неубывающую функцию , что для выполняются три названных свойства.ПостроениеОпределим рекурсивно. Положим .Для :
Иначе ; значения для уже известны.
for: if and or return if and and return
for: if and or return if and and return Корректность алгоритмаПроверим выполнение второго и третьего свойств языка .
Таким образом, при верности предположения второе и третье свойства выполнены.Время работы алгоритмаПроверим первое свойство — полиномиальность языка .Пусть — время вычисления .Заметим, что по построению для .Время выполнения шагов составляет:
, где — время нахождения произведения чисел и
Таким образом,
Пусть . Существует константа , для которой при любом верноТогда, в силу и неравенства выше, по индукции легко доказать, что ограничено сверху , то есть , а, в свою очередь, . |
Источник
- William Gasarch, Lance Fortnow. Two Proofs of Ladner’s Theorem