Натуральные числа — различия между версиями
(→Деление чисел с остатком) |
(→Деление чисел с остатком) |
||
Строка 7: | Строка 7: | ||
'''Формула деления с остатком''': <math>n = m\,k + r,</math> где <math>n\,</math> - делимое, <math>m\,</math> - делитель, <math>k\,</math> - частное, <math>r\,</math> - остаток, причем <math>0\leqslant r < b </math> | '''Формула деления с остатком''': <math>n = m\,k + r,</math> где <math>n\,</math> - делимое, <math>m\,</math> - делитель, <math>k\,</math> - частное, <math>r\,</math> - остаток, причем <math>0\leqslant r < b </math> | ||
− | Любое число можно представить в виде: <math>n = 2\,k + r,</math> , где остаток <math>r\,</math> = <math>0\,</math> или <math>r\,</math> = <math>1\,</math> | + | :Любое число можно представить в виде: <math>n = 2\,k + r,</math> , где остаток <math>r\,</math> = <math>0\,</math> или <math>r\,</math> = <math>1\,</math> |
− | Любое число можно представить в виде: <math>n = 4\,k + r,</math> , где остаток <math>r\,</math> = <math>0\,</math> или <math>r\,</math> = <math>1\,</math> или <math>r\,</math> = <math>2\,</math> или <math>r\,</math> = <math>3\,</math> | + | :Любое число можно представить в виде: <math>n = 4\,k + r,</math> , где остаток <math>r\,</math> = <math>0\,</math> или <math>r\,</math> = <math>1\,</math> или <math>r\,</math> = <math>2\,</math> или <math>r\,</math> = <math>3\,</math> |
− | Любое число можно представить в виде: <math>n = m\,k + r,</math> , где остаток <math>r\,</math> принимает значения от <math>0\,</math> до <math>(m-1)\,</math> | + | :Любое число можно представить в виде: <math>n = m\,k + r,</math> , где остаток <math>r\,</math> принимает значения от <math>0\,</math> до <math>(m-1)\,</math> |
==Принцип индукции, существование наименьшего числа в любом множестве натуральных чисел== | ==Принцип индукции, существование наименьшего числа в любом множестве натуральных чисел== |
Версия 16:00, 30 июня 2010
Эта статья находится в разработке!
Содержание
Деление чисел с остатком
Если натуральное число
не делится на натуральное число , т.е. не существует такого натурального числа , что то деление называется делением с остатком.Формула деления с остатком:
где - делимое, - делитель, - частное, - остаток, причем- Любое число можно представить в виде: , где остаток = или =
- Любое число можно представить в виде: , где остаток = или = или = или =
- Любое число можно представить в виде: , где остаток принимает значения от до