Протокол Голдвассер-Сипсера для оценки размера множества — различия между версиями
Rost (обсуждение | вклад) (→Оценки вероятностей) |
Rost (обсуждение | вклад) (→Определение) |
||
Строка 1: | Строка 1: | ||
− | == | + | ==Описание протокола== |
Рассмотрим множество <tex>S \subseteq \left\{ 0, 1 \right\} ^m</tex>, для которого существует сертификат проверки на принадлежность. Протоколом Голдвассера-Сипсера является двухуровневый [[Интерактивные протоколы. Класс IP. Класс AM| интерактивный протокол]], в котором <tex>V</tex> старается принять множество <tex>S</tex>, если <tex>|S| \ge K</tex>, и отвергнуть, если <tex>|S| \le \frac{K}{2}</tex>. | Рассмотрим множество <tex>S \subseteq \left\{ 0, 1 \right\} ^m</tex>, для которого существует сертификат проверки на принадлежность. Протоколом Голдвассера-Сипсера является двухуровневый [[Интерактивные протоколы. Класс IP. Класс AM| интерактивный протокол]], в котором <tex>V</tex> старается принять множество <tex>S</tex>, если <tex>|S| \ge K</tex>, и отвергнуть, если <tex>|S| \le \frac{K}{2}</tex>. | ||
Версия 02:10, 4 июня 2012
Описание протокола
Рассмотрим множество интерактивный протокол, в котором старается принять множество , если , и отвергнуть, если .
, для которого существует сертификат проверки на принадлежность. Протоколом Голдвассера-Сипсера является двухуровневыйПротокол устроен следующим образом:
Выберем
так, чтобы .семейства универсальных попарно независимых хеш-функций и из .
Отправляет , случайным образом выбиранные изПытается , такой что . Отправляет найденный и сертификат принадлежности множеству .
Если верно, что и , то множество принимается. В противном случае отвергает множество .
Оценки вероятностей
Пусть
. Если , тогда . Отсюда получаем, что . Необходимо показать, что в случае , будет принимать с вероятностью различимо большей .Утверждение: |
Если , то , где случайным образом выбрано из , а из . |
Покажем, что для каждого Для каждого и случайно выбранной функции справедливо . определим событие . Тогда , что формуле включения-исключения не превосходит . Поскольку выбирались , то и . Тогда . |
Стоит отметить, что если
, то может выбрать так, чтобы . А значит, в качестве оценки вероятности можно воспользоваться .Итого:
- если , то .
- если , то .
Источники
- Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach