Протокол Голдвассер-Сипсера для оценки размера множества — различия между версиями
Rost (обсуждение | вклад) (→Определение) |
Rost (обсуждение | вклад) (→Описание протокола) |
||
Строка 2: | Строка 2: | ||
Рассмотрим множество <tex>S \subseteq \left\{ 0, 1 \right\} ^m</tex>, для которого существует сертификат проверки на принадлежность. Протоколом Голдвассера-Сипсера является двухуровневый [[Интерактивные протоколы. Класс IP. Класс AM| интерактивный протокол]], в котором <tex>V</tex> старается принять множество <tex>S</tex>, если <tex>|S| \ge K</tex>, и отвергнуть, если <tex>|S| \le \frac{K}{2}</tex>. | Рассмотрим множество <tex>S \subseteq \left\{ 0, 1 \right\} ^m</tex>, для которого существует сертификат проверки на принадлежность. Протоколом Голдвассера-Сипсера является двухуровневый [[Интерактивные протоколы. Класс IP. Класс AM| интерактивный протокол]], в котором <tex>V</tex> старается принять множество <tex>S</tex>, если <tex>|S| \ge K</tex>, и отвергнуть, если <tex>|S| \le \frac{K}{2}</tex>. | ||
− | + | Выберем <tex>k</tex> так, чтобы <tex>2^{k - 2} \le K \le 2^{k - 1}</tex>. Тогда протокол устроен следующим образом: | |
− | |||
− | Выберем <tex>k</tex> так, чтобы <tex>2^{k - 2} \le K \le 2^{k - 1}</tex>. | ||
<tex>V:</tex> Отправляет <tex>P</tex>, случайным образом выбиранные <tex>h : \left\{ 0, 1 \right\} ^ m \rightarrow \left\{ 0, 1 \right\} ^ k</tex> из [[Семейство универсальных попарно независимых хеш-функций| семейства универсальных попарно независимых хеш-функций]] <tex>H_{m, k}</tex> и <tex>y</tex> из <tex>\left\{ 0, 1 \right\} ^ k</tex>. | <tex>V:</tex> Отправляет <tex>P</tex>, случайным образом выбиранные <tex>h : \left\{ 0, 1 \right\} ^ m \rightarrow \left\{ 0, 1 \right\} ^ k</tex> из [[Семейство универсальных попарно независимых хеш-функций| семейства универсальных попарно независимых хеш-функций]] <tex>H_{m, k}</tex> и <tex>y</tex> из <tex>\left\{ 0, 1 \right\} ^ k</tex>. | ||
− | <tex>P:</tex> Пытается <tex>x \in S</tex>, такой что <tex>h(x) = y</tex>. Отправляет <tex>V</tex> найденный <tex>x</tex> и сертификат <tex>c</tex> | + | <tex>P:</tex> Пытается <tex>x \in S</tex>, такой что <tex>h(x) = y</tex>. Отправляет <tex>V</tex> найденный <tex>x</tex> и сертификат <tex>c</tex>, подтверждающий принадлежность <tex>x</tex> множеству <tex>S</tex>. |
<tex>V:</tex> Если верно, что <tex>x \in S</tex> и <tex>h(x) = y</tex>, то множество <tex>S</tex> принимается. В противном случае <tex>V</tex> отвергает множество <tex>S</tex>. | <tex>V:</tex> Если верно, что <tex>x \in S</tex> и <tex>h(x) = y</tex>, то множество <tex>S</tex> принимается. В противном случае <tex>V</tex> отвергает множество <tex>S</tex>. |
Версия 02:12, 4 июня 2012
Описание протокола
Рассмотрим множество интерактивный протокол, в котором старается принять множество , если , и отвергнуть, если .
, для которого существует сертификат проверки на принадлежность. Протоколом Голдвассера-Сипсера является двухуровневыйВыберем
так, чтобы . Тогда протокол устроен следующим образом:семейства универсальных попарно независимых хеш-функций и из .
Отправляет , случайным образом выбиранные изПытается , такой что . Отправляет найденный и сертификат , подтверждающий принадлежность множеству .
Если верно, что и , то множество принимается. В противном случае отвергает множество .
Оценки вероятностей
Пусть
. Если , тогда . Отсюда получаем, что . Необходимо показать, что в случае , будет принимать с вероятностью различимо большей .Утверждение: |
Если , то , где случайным образом выбрано из , а из . |
Покажем, что для каждого Для каждого и случайно выбранной функции справедливо . определим событие . Тогда , что формуле включения-исключения не превосходит . Поскольку выбирались , то и . Тогда . |
Стоит отметить, что если
, то может выбрать так, чтобы . А значит, в качестве оценки вероятности можно воспользоваться .Итого:
- если , то .
- если , то .
Источники
- Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach