Материал из Викиконспекты
|
|
Строка 55: |
Строка 55: |
| Пусть <tex> A = \{1^n | </tex> бинарное представление <tex> n </tex> принадлежит <tex> L \} </tex>. | | Пусть <tex> A = \{1^n | </tex> бинарное представление <tex> n </tex> принадлежит <tex> L \} </tex>. |
| <tex> \mathrm{P/poly} </tex> позволяет разрешить <tex> A </tex>. В качестве подсказки <tex> a_n </tex> для входа <tex> x </tex> будем передавать единицу, если <tex> 1^n \in A </tex>, иначе ноль. <br> | | <tex> \mathrm{P/poly} </tex> позволяет разрешить <tex> A </tex>. В качестве подсказки <tex> a_n </tex> для входа <tex> x </tex> будем передавать единицу, если <tex> 1^n \in A </tex>, иначе ноль. <br> |
| + | Язык <tex> A </tex> неразрешим, иначе можно было бы разрешить и <tex> L </tex>, что неверно. <br> |
| Таким образом, <tex> \mathrm{P/poly} </tex> содержит неразрешимые языки. | | Таким образом, <tex> \mathrm{P/poly} </tex> содержит неразрешимые языки. |
| }} | | }} |
| | | |
| [[Категория: Теория сложности]] | | [[Категория: Теория сложности]] |
Версия 22:26, 4 июня 2012
Определения
Определение: |
[math] \mathrm{PSIZE} [/math] — класс языков, разрешимых семейством логических схем [math] \{C_n\}_{n\gt 0} [/math] полиномиального размера с n входами и одним выходом.
[math] \mathrm{PSIZE} =\{L \bigm| \forall n [/math] [math] \exists C_n [/math]:
- [math] |C_n| \leqslant p(n)[/math], где [math] p [/math] — полином;
- Число входов в схеме [math] (C_n) [/math] равно [math] n [/math];
- Каждая схема [math] (C_n) [/math] имеет один выход;
- [math]x \in L \Leftrightarrow C_{|x|}(x) = 1 \}[/math].
|
Определение: |
Пусть [math] \mathrm{C} [/math] — сложностный класс, [math] f [/math] — функция. Тогда [math] \mathrm{C}/f = \{L \bigm| [/math] существуют подсказки [math] a_0, a_1, \ldots , a_n, \ldots [/math] и программа [math] p [/math], удовлетворяющая ограничениям [math] \mathrm{C} [/math]:
- [math]|a_i| \leqslant f(i) [/math];
- [math] x \in L \Leftrightarrow p(x, a_{|x|})=1 \}[/math].
|
Определение: |
[math] \mathrm{P/poly} = \bigcup\limits_{p \in poly} \mathrm{P}/p [/math]. |
Теоремы
Теорема: |
[math] \mathrm{P} \subset \mathrm{PSIZE} [/math]. |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math] L \in \mathrm{P} [/math]. Тогда существует машина Тьюринга [math] M [/math], распознающая язык [math] L [/math]. Составим логическую схему для [math] M [/math], как мы сделали в теореме Кука, ее размеры ограничены полиномом, она допускает только слова из языка. Отсюда следует, что [math] \mathrm{P} \subset \mathrm{PSIZE} [/math]. |
[math]\triangleleft[/math] |
Теорема: |
[math] \mathrm{PSIZE} = \mathrm{P/poly} [/math]. |
Доказательство: |
[math]\triangleright[/math] |
Докажем, что [math] \mathrm{PSIZE} \subset \mathrm{P/poly} [/math].
Пусть [math] L \in \mathrm{PSIZE} [/math], [math] x [/math] — входная строка. Тогда для [math] L [/math] существуют логические схемы [math] C_0, C_1, .., C_n, .. [/math]. В качестве подсказки для [math] x [/math] предоставим логическую схему [math] C_{|x|} [/math]. Программа [math] p [/math] получает на вход [math] x [/math] и [math] C_{|x|} [/math] и возвращает значение, вычисляемое [math] C_{|x|} [/math] для входа [math] x [/math]. Запишем программу
[math] p(x, C_{|x|}) [/math]:
return [math]C_{|x|}(x) [/math]
Логическая схема [math] C_{|x|} [/math] имеет полиномиальный размер. Оба условия для [math] \mathrm{P/poly} [/math] выполнены, [math] \mathrm{PSIZE} \subset \mathrm{P/poly} [/math].
Докажем, что [math] \mathrm{P/poly} \subset \mathrm{PSIZE} [/math].
Пусть [math] L \in \mathrm{P/poly} [/math], [math] x [/math] — входная строка. Тогда для [math] L [/math] существуют подсказки [math] a_0, a_1, .. , a_n, .. [/math]. Программа [math] p [/math] по входу [math] x [/math] и подсказке [math] a_{|x|} [/math] определяет принадлежность [math] x [/math] языку [math] L [/math]. Зафиксируем длину входной строки [math] x [/math] как [math] n [/math]. Теперь запишем [math] p [/math] в виде логической схемы [math] C_m [/math] ( [math] m = n + |a_n| [/math]), которая принимает на вход слова длины [math] n [/math] и подсказку [math] a_n [/math]. Полученная схема будет полиномиального размера. Зашьем подсказку в самой схеме, то есть впишем в нее значения битов подсказки. Получим схему [math] C_n [/math] полиномиального размера, принимающую слова длины [math] n [/math] и определяющую их принадлежность языку [math] L [/math]. Такие схемы можно получить для любой длины входа. Значит, [math] \mathrm{P/poly} \subset \mathrm{PSIZE} [/math]. |
[math]\triangleleft[/math] |
Теорема: |
[math] \mathrm{P/poly} [/math] содержит неразрешимые языки. |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math] L \subset \{0, 1\}^* [/math] — произвольный неразрешимый язык.
Пусть [math] A = \{1^n | [/math] бинарное представление [math] n [/math] принадлежит [math] L \} [/math].
[math] \mathrm{P/poly} [/math] позволяет разрешить [math] A [/math]. В качестве подсказки [math] a_n [/math] для входа [math] x [/math] будем передавать единицу, если [math] 1^n \in A [/math], иначе ноль.
Язык [math] A [/math] неразрешим, иначе можно было бы разрешить и [math] L [/math], что неверно.
Таким образом, [math] \mathrm{P/poly} [/math] содержит неразрешимые языки. |
[math]\triangleleft[/math] |