Дискретное логарифмирование в группе — различия между версиями
Строка 3: | Строка 3: | ||
}} | }} | ||
− | Рассмотрим конечную группу <tex>G</tex>. Для заданного <tex>a</tex> необходимо найти такое минимальное <tex>n</tex>, что <tex>a^n=e</tex>. <br> | + | Рассмотрим конечную [[группа|группу]] <tex>G</tex>. Для заданного <tex>a</tex> необходимо найти такое минимальное <tex>n</tex>, что <tex>a^n=e</tex>. <br> |
Теперь рассмотрим '''обобщенную задачу поиска порядка''', также называемую '''задачей дискретного логарифмирования''': для заданных <tex>a</tex> и <tex>b</tex> из группы найти такое минимальное <tex>n</tex>, что <tex>a ^ n = b</tex>. <br> | Теперь рассмотрим '''обобщенную задачу поиска порядка''', также называемую '''задачей дискретного логарифмирования''': для заданных <tex>a</tex> и <tex>b</tex> из группы найти такое минимальное <tex>n</tex>, что <tex>a ^ n = b</tex>. <br> | ||
Очевидно, <tex>n < |G| </tex> (следует из принципа Дирихле). Пусть <tex>m = \lceil \sqrt{|G|} \rceil</tex>. Будем искать <tex>n</tex> в виде <tex>xm-y</tex>, где <tex>y \in 0 \dots m - 1</tex> и <tex>x \in 1 \dots m</tex> (такое представление существует и единственно на основании существования и единственности деления с остатком).<br> | Очевидно, <tex>n < |G| </tex> (следует из принципа Дирихле). Пусть <tex>m = \lceil \sqrt{|G|} \rceil</tex>. Будем искать <tex>n</tex> в виде <tex>xm-y</tex>, где <tex>y \in 0 \dots m - 1</tex> и <tex>x \in 1 \dots m</tex> (такое представление существует и единственно на основании существования и единственности деления с остатком).<br> |
Версия 13:23, 1 июля 2010
Эта статья требует доработки!
- Зачем нужен алгоритм с временем работы , если можно просто перебрать все степени за ?(исправлено)
Если Вы исправили некоторые из указанных выше замечаний, просьба дописать в начало соответствующего пункта (Исправлено).
Рассмотрим конечную группу . Для заданного необходимо найти такое минимальное , что .
Теперь рассмотрим обобщенную задачу поиска порядка, также называемую задачей дискретного логарифмирования: для заданных и из группы найти такое минимальное , что .
Очевидно, (следует из принципа Дирихле). Пусть . Будем искать в виде , где и (такое представление существует и единственно на основании существования и единственности деления с остатком).
Далее мы выписываем все полученные выражения для левой и правой частей при всех допустимых
и (или складываем в удобную структуру данных: отсортированный массив, хеш, дерево и т. д.). После чего ищем пересечение. Для каждого элемента одной части поиск в структуре данных для другой части (в случае с отсортированным массивом) занимает время . Учитывая, что время на предварительную обработку , общее время работы алгоритма − .