PCP-система — различия между версиями
| Строка 24: | Строка 24: | ||
|definition = | |definition = | ||
Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> {{---}} это объединение всех языков, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой неадаптивный верификатор <tex>V</tex> работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно <tex>r(n)</tex> и <tex>q(n)</tex>, а доказательства имеют экспоненциальную длину.<br/> | Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> {{---}} это объединение всех языков, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой неадаптивный верификатор <tex>V</tex> работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно <tex>r(n)</tex> и <tex>q(n)</tex>, а доказательства имеют экспоненциальную длину.<br/> | ||
| − | Часто <tex>\mathrm{PCP}_{1, {} | + | Часто <tex>\mathrm{PCP}_{1, \frac{1}{2}}[r(n), q(n)]</tex> обозначают как <tex>\mathrm{PCP}[r(n), q(n)]</tex>. |
}} | }} | ||
| Строка 69: | Строка 69: | ||
Проверим полноту и обоснованность: | Проверим полноту и обоснованность: | ||
* '''Полнота''': если графы неизоморфны, то существует <tex>\pi</tex> такая, что всякий её символ равен 1 или 2 и задан корректно. Тогда на этой <tex>\pi</tex> верификатор всегда вернёт 1; | * '''Полнота''': если графы неизоморфны, то существует <tex>\pi</tex> такая, что всякий её символ равен 1 или 2 и задан корректно. Тогда на этой <tex>\pi</tex> верификатор всегда вернёт 1; | ||
| − | * '''Обоснованность''': если графы изоморфны, то фиксируем <tex>\pi</tex>. Пусть <tex>\Omega</tex> {{---}} это множество всех конфигураций случайной ленты, с которой работает <tex>V</tex>. Заметим, что все конфигурации из <tex>\Omega</tex> будут переданы <tex>V</tex> с равными вероятностями. Теперь рассмотрим произвольную конфигурацию типа <tex>\psi</tex> из <tex>\Omega</tex>, то есть конфигурацию, на которой <tex>V</tex> допускает <tex>\langle G_1, G_2 \rangle</tex>. Заметим, что для каждой такой конфигурации существует однозначно определяемая конфигурация типа <tex>\overline \psi</tex>, отличающаяся от <tex>\psi</tex> только первым битом и также принадлежащая <tex>\Omega</tex>. Запустившись на <tex>\overline \psi</tex>, <tex>V</tex>, очевидно, отвергнет <tex>\langle G_1, G_2 \rangle</tex>. Таким образом, конфигураций типа <tex>\psi</tex> в <tex>\Omega</tex> не больше половины. Как уже отмечалось, конфигурации из <tex>\Omega</tex> подаются <tex>V</tex> с равными вероятностями, а конфигураций не из <tex>\Omega</tex>, по определению, <tex>V</tex> не подаётся. Таким образом, вероятность ошибки не превышает <tex>{} | + | * '''Обоснованность''': если графы изоморфны, то фиксируем <tex>\pi</tex>. Пусть <tex>\Omega</tex> {{---}} это множество всех конфигураций случайной ленты, с которой работает <tex>V</tex>. Заметим, что все конфигурации из <tex>\Omega</tex> будут переданы <tex>V</tex> с равными вероятностями. Теперь рассмотрим произвольную конфигурацию типа <tex>\psi</tex> из <tex>\Omega</tex>, то есть конфигурацию, на которой <tex>V</tex> допускает <tex>\langle G_1, G_2 \rangle</tex>. Заметим, что для каждой такой конфигурации существует однозначно определяемая конфигурация типа <tex>\overline \psi</tex>, отличающаяся от <tex>\psi</tex> только первым битом и также принадлежащая <tex>\Omega</tex>. Запустившись на <tex>\overline \psi</tex>, <tex>V</tex>, очевидно, отвергнет <tex>\langle G_1, G_2 \rangle</tex>. Таким образом, конфигураций типа <tex>\psi</tex> в <tex>\Omega</tex> не больше половины. Как уже отмечалось, конфигурации из <tex>\Omega</tex> подаются <tex>V</tex> с равными вероятностями, а конфигураций не из <tex>\Omega</tex>, по определению, <tex>V</tex> не подаётся. Таким образом, вероятность ошибки не превышает <tex>\frac{1}{2}</tex>. |
}} | }} | ||
Версия 02:09, 5 июня 2012
PCP(probabilistically checkable proof) - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные.
Определения
| Определение: |
-системой (системой вероятностно проверяемых доказательств) с полнотой и обоснованностью над алфавитом для языка , где , называется верификатор — вероятностная машина Тьюринга, имеющая доступ к доказательству — цепочке из , удовлетворяющая следующим свойствам:
|
| Определение: |
| Randomness complexity (вероятностной сложностью) верификатора называется число случайных битов, используемых за всё время работы со входом длины . |
| Определение: |
| Query complexity (запросной сложностью) верификатора называется число запросов битов из , отсылаемых за всё время работы со входом длины . |
| Определение: |
| Верификатор называется non-adaptive (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все запросы отправить одновременно. |
| Определение: |
| Сложностный класс — это объединение всех языков, для которых существует -система над бинарным алфавитом с полнотой и обоснованностью , в которой неадаптивный верификатор работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно и , а доказательства имеют экспоненциальную длину. Часто обозначают как . |
Свойства
| Теорема: |
= = = . |
| Доказательство: |
|
| Теорема: |
= . |
| Доказательство: |
| Очевидно следует из определения coRP. |
| Теорема: |
= . |
| Доказательство: |
| Очевидно следует из определения Σ₁. |
Пример
| Теорема: |
Graph Nonisomorphism(GNI) . |
| Доказательство: |
|
и — графы на вершинах. Требуется проверить, неизоморфны ли они друг другу.
Верификатором будет вероятностная МТ, работающая эквивалентно следующему псевдокоду: p() { i = random{1, 2}; = random permutation{1..n}; = ; if ( == 0) or ( == 3-i) { return 0; } // == i return 1; } Проверим полноту и обоснованность:
|