QpmtnriLmax — различия между версиями
(→Алгоритм решения) |
(→Алгоритм решения) |
||
Строка 36: | Строка 36: | ||
(b) В расширенной сети существует поток от s до t со значением <tex>\sum\limits_{i=1}^n p_i</tex> | (b) В расширенной сети существует поток от s до t со значением <tex>\sum\limits_{i=1}^n p_i</tex> | ||
− | |proof= | + | |proof=Равшана переводить, не мешать |
− | (b) \Rightarrow (a)</tex>: | + | <tex>(b) \Rightarrow (a)</tex>: |
Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется <tex>\sum\limits_{i \in A} x_{iK} \le T_Kh(A)</tex>. | Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется <tex>\sum\limits_{i \in A} x_{iK} \le T_Kh(A)</tex>. | ||
Версия 23:50, 7 июня 2012
Постановка задачи
Рассмотрим еще одну задачу на нахождение расписания:
- Каждое задание имеет своё времени выпуска .
- Срок завершения(дедлайн) .
Требуется минимизировать опоздание
Алгоритм решения
Применим бинарный поиск. Таким образом сведем задачу к поиску потока сети.
Пусть
упорядоченная последовательности всех значений и . Определим для .Расширим сеть, показанную на Рис. 1 следующим образом:
- произвольный интервал-узел. Обозначим через набор предшественников узла , тогда замененная нами подсеть(Рис. 2.1) определяется как . Расширение сети показано на Рис. 2.2.
Cчитаем, что станки индексируются в порядке невозрастания скоростей
, кроме того .Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с емкостью и для всех и существует дуга из в с емкостью .Для каждого
у нас есть такие расширения. Кроме того, мы сохраняем дуги из в емкостью и дуги из в емкостью (Рис. 1).Теорема: |
Следующие свойства эквивалентны:
(a) Существует допустимое расписание. (b) В расширенной сети существует поток от s до t со значением |
Доказательство: |
Равшана переводить, не мешать : Рассмотрим в расширенной сети поток величиной . Обозначим через общий поток, который идет от до . Заметим, что . Достаточно показать, что для каждого подмножества выполняется . Это означает, что условие (5.8) TODO: запились выполняется и требования к обработке могут быть запланированы как для . Рассмотрим подсеть в расширенной сети индуцированной и соответствующие части потока.Часть этой части потока, который проходит через ограниченна . Таким образом, мы имеем . (5.9) То, что равенство (5.9) справедливо, can be seen as follows. Если , то. В противном случае
. : Предположим, что допустимое расписание существует. Для и пусть является "объемом работ", который будет выполняться на работу в интервале в соответствии с возможным расписанием. Тогда для всех и произвольных наборов , неравенство (5.10) выполняется. Кроме того, для у нас . Остается показать, что можно отправить единиц потока от до в расширенной сети. Такой поток существует, если для любого и значение ограничено величиной минимального среза части сети с истоками и стоком . Тем не менее, это значение
Используя (5.10) и правую часть (5.9), получаем что и является искомым неравенством. |
Время работы
Работа с максимальным потоком в расширенной сети занимает
шагов, проверка может быть сделана с такой же скоростью. Для решения мы используем бинарный поиск, получается алгоритм со сложностью , потому как , ограничен , при .представляет собой частный случай , и может быть решена более эффективно. Labetoulle, Lawler, Lenstra, и Rinnooy Kan разработали алгоритм работающий за специально для этого случая.
Утверждение: |
Задача может быть решена за шагов. |
Решение С другой стороны, решение эквивалентно нахождению наименьшего , такого, что задача с допустимым временным интервалом имеет решение. эквивалентно нахождению такого наименьшего , такого, что задача с временным интервалом или имеет решение. |
Таким образом, задачи
и симметричны.Источники
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8