Цепная дробь — различия между версиями
м |
|||
| Строка 7: | Строка 7: | ||
}} | }} | ||
| − | Примеры | + | === Примеры === |
| − | + | * <tex> \frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=\langle 1, 2, 2 \rangle</tex> | |
| − | <tex> \frac{7}{5}=1+\frac{1}{2+\frac{1}{2}}=\langle 1, 2, 2 \rangle</tex> | + | * <tex> \sqrt{2} = 1+\frac{1}{\sqrt{2}+1}=1+\frac{1}{2+\frac{1}{\sqrt{2}+1}}=\langle 1, 2, 2, \cdots \rangle</tex> |
| − | |||
| − | <tex> \sqrt{2} = 1+\frac{1}{\sqrt{2}+1}=1+\frac{1}{2+\frac{1}{\sqrt{2}+1}}=\langle 1, 2, 2, \cdots \rangle</tex> | ||
Числитель и знаменатель цепной дроби можно записать в виде полиномов от переменных <tex>a_0, a_1, a_2,\cdots, a_n</tex>. При этом, поскольку числитель каждой дроби является знаменателем следующей, полиномы для числителей и знаменателей имеют одинаковый вид. | Числитель и знаменатель цепной дроби можно записать в виде полиномов от переменных <tex>a_0, a_1, a_2,\cdots, a_n</tex>. При этом, поскольку числитель каждой дроби является знаменателем следующей, полиномы для числителей и знаменателей имеют одинаковый вид. | ||
Версия 20:45, 2 июля 2010
| Определение: |
| Цепная дробь — это выражение вида
|
Примеры
Числитель и знаменатель цепной дроби можно записать в виде полиномов от переменных . При этом, поскольку числитель каждой дроби является знаменателем следующей, полиномы для числителей и знаменателей имеют одинаковый вид. Таким образом, цепная дробь представима в виде , где — некоторый полином от переменной.
Свойства цепных дробей
- — полином от переменной, состоящий из мономов.
- .
- .
- Для числителей и знаменателей -ой подходящей дроби верны следующие формулы:
Доказательства свойств
| Лемма (1): |
. |
| Доказательство: |
|
. Следовательно . |
| Лемма (2): |
— полином от переменной, состоящий из мономов. |
| Доказательство: |
|
База. При : — полином от одной переменной с одним мономом. — два монома. Переход. Пусть верно, что в монома. Докажем, что в монома. В нет мономов, содержащих . Значит в слагаемых. |
| Теорема (1): |
| Доказательство: |
|
База: Пусть верно для всех . Докажем для .
Обобщим последнюю формулу и докажем по индукции. Пусть верно : . Докажем для больших : . Используя условие теоремы для получаем :
Следовательно получаем : . |
| Лемма (3): |
. |
| Доказательство: |
|
Эта формула аналогична формуле из Леммы 1, за исключением того, что "отщепляются" с другого конца. Для получения формулы достаточно скомбинировать результаты Леммы 1 и Теоремы 1. |