QpmtnriLmax — различия между версиями
AVasilyev (обсуждение | вклад) (→Постановка задачи) |
AVasilyev (обсуждение | вклад) (→Алгоритм решения) |
||
Строка 15: | Строка 15: | ||
[[Файл:Figure_5.9.b.png|500px|thumb|right|Рис. 2 - Расширение сети]] | [[Файл:Figure_5.9.b.png|500px|thumb|right|Рис. 2 - Расширение сети]] | ||
− | Как в задаче <tex>P \mid pmtn, r_i \mid L_{max}</tex> ([[PpmtnriLmax|ссылка]]) сведем задачу к поиску потока в сети. | + | Как в задаче <tex>P \mid pmtn, r_i \mid L_{max}</tex> ([[PpmtnriLmax|ссылка]]) применим метод [[Вещественный_двоичный_поиск|двоичного поиска]] и сведем задачу к поиску максимального потока в сети. Опишем алгоритм проверки существования допустимого расписания с <tex> L_{max} <= L^* </tex>. Для этого увеличим все <tex> d_i </tex> на <tex> L^* </tex>, и заметим, что |
Пусть <tex> t_1 \le t_2 \le ... \le t_r </tex> упорядоченная последовательность всех значений <tex>r_i</tex> и <tex>d_i</tex>. | Пусть <tex> t_1 \le t_2 \le ... \le t_r </tex> упорядоченная последовательность всех значений <tex>r_i</tex> и <tex>d_i</tex>. | ||
Строка 24: | Строка 24: | ||
Расширение сети показано на Рис. 2. | Расширение сети показано на Рис. 2. | ||
− | Cчитаем, что станки | + | Cчитаем, что станки занумерованы в порядке невозрастания скоростей <tex> s_1 \ge s_2 \ge . . . \ge s_m </tex> (считаем <tex>s_{m+1} = 0</tex>). |
Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> с пропускной способностью <tex> j(s_j - s_{j+1}) T_K </tex> и для всех <tex>\nu = 1,. . . , s</tex> и <tex>j = 1,. . ., m</tex> существует дуга из <tex>J_{i_\nu}</tex> в <tex>(K, J)</tex> с пропускной способностью <tex> (s_j - s_{j+1}) T_K </tex>. Это выполняется для каждой вершины <tex>I_K</tex>. Кроме того, мы сохраняем дуги из <tex>s</tex> в <tex>J_i</tex> пропускной способностью <tex>p_i</tex> и дуги из <tex>I_K</tex> в <tex>t</tex> пропускной способностью <tex>S_mT_K</tex> (Рис. 1). | Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> с пропускной способностью <tex> j(s_j - s_{j+1}) T_K </tex> и для всех <tex>\nu = 1,. . . , s</tex> и <tex>j = 1,. . ., m</tex> существует дуга из <tex>J_{i_\nu}</tex> в <tex>(K, J)</tex> с пропускной способностью <tex> (s_j - s_{j+1}) T_K </tex>. Это выполняется для каждой вершины <tex>I_K</tex>. Кроме того, мы сохраняем дуги из <tex>s</tex> в <tex>J_i</tex> пропускной способностью <tex>p_i</tex> и дуги из <tex>I_K</tex> в <tex>t</tex> пропускной способностью <tex>S_mT_K</tex> (Рис. 1). |
Версия 23:06, 11 июня 2012
Постановка задачи
Рассмотрим задачу на нахождение расписания:
- У нас есть несколько станков, работающих параллельно. У станков могут быть разные скорости выполнения работ.
- Есть несколько заданий, каждое имеет своё время появления и время окончания .
- Работа может быть прервана в любой момент и продолжена позже на любой машине.
Требуется минимизировать максимальное опоздание
Алгоритм решения
Как в задаче ссылка) применим метод двоичного поиска и сведем задачу к поиску максимального потока в сети. Опишем алгоритм проверки существования допустимого расписания с . Для этого увеличим все на , и заметим, что
(Пусть
упорядоченная последовательность всех значений и . Определим интервалы на исходной сети (Рис. 1) для .Расширим эту сеть. Обозначим через
набор предшественников узла , тогда замененная нами подсеть определяется как .Расширение сети показано на Рис. 2.
Cчитаем, что станки занумерованы в порядке невозрастания скоростей
(считаем ).Расширенная подсеть строится путем добавления к вершинам
вершин . При , есть дуги от до с пропускной способностью и для всех и существует дуга из в с пропускной способностью . Это выполняется для каждой вершины . Кроме того, мы сохраняем дуги из в пропускной способностью и дуги из в пропускной способностью (Рис. 1).Теорема: |
Следующие утверждения эквивалентны:
Существует допустимое расписание. В расширенной сети существует поток от до со значением |
Доказательство: |
Рассмотрим в расширенной сети поток величиной . Обозначим через общий поток, который идет от до . Заметим, что . Достаточно показать, что для каждого подмножества выполняется ,где . Это означает, что условие выполняется и требования к обработке могут быть запланированы как для . Рассмотрим подсеть в расширенной сети в подмножестве и соответствующие части потока. Фрагмент частичного потока, который проходит через ограничен. Таким образом, мы имеем . То, что равенство справедливо, может рассматриваться как следствие. Если , то. В противном случае . Предположим, что допустимое расписание существует. Для и пусть является "объемом работ", который будет выполняться в интервале в соответствии с нашим возможным расписанием. Тогда для всех и произвольных наборов , неравенство
выполняется. Кроме того, для у нас . Остается показать, что можно отправить от до в расширенной сети. Такой поток существует, если и значение ограничено величиной минимального разреза части сети с истоками и стоком . Тем не менее, это значение
Используя и правую часть , получаемчто и является искомым неравенством. |
Время работы
Работа с максимальным потоком в расширенной сети занимает
шагов, проверка может быть сделана с такой же скоростью. Для решения мы используем бинарный поиск, а значит, получаем алгоритм с -приближенной сложностью , потому как , ограничен , при .Задача
представляет собой частный случай , и может быть решена более эффективно. Лабетоуль (Labetoulle J.), Лаулер (Lawler E.L.), Ленстра (Lenstra. J.K.), и Ринной Кан (Rinnooy Kan A.H.G.) разработали алгоритм работающий за специально для этого случая.Источники
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 379 стр. — ISBN 978-3-540-69515-8