Эволюционные алгоритмы поиска эйлерова цикла в графе — различия между версиями
(→Улучшенный jump-оператор) |
|||
| Строка 6: | Строка 6: | ||
=== Предыдущие результаты === | === Предыдущие результаты === | ||
====Перестановка ребер ==== | ====Перестановка ребер ==== | ||
| − | Пусть для графа <tex>G</tex> задан набор всех его ребер <tex>(e_1, e_2, \dots e_m)</tex>. На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное время. | + | Пусть для графа <tex>G</tex> задан набор всех его ребер <tex>(e_1, e_2, \dots e_m)</tex>. На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное от количества ребер время. |
====Jump-оператор==== | ====Jump-оператор==== | ||
| − | Jump-оператор работает следующим образом. Для набора ребер <tex>(e_1, e_2, \dots e_m)</tex> оператор <tex>jump(i,j)</tex> передвигает <tex>i</tex>-й элемент на позицию <tex>j</tex> и циклически сдвигает ребра между позициями <tex>i</tex> и <tex>j</tex> влево (если <tex>i > j</tex> то вправо) . Таким образом набор <tex>(e_1, e_2, \dots e_m)</tex> превратиться в <tex>(e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)</tex>. Работает за <tex>O(m^5)</tex> | + | Jump-оператор работает следующим образом. Для набора ребер <tex>(e_1, e_2, \dots e_m)</tex> оператор <tex>jump(i,j)</tex> передвигает <tex>i</tex>-й элемент на позицию <tex>j</tex> и циклически сдвигает ребра между позициями <tex>i</tex> и <tex>j</tex> влево (если <tex>i > j</tex> то вправо) . Таким образом набор <tex>(e_1, e_2, \dots e_m)</tex> превратиться в <tex>(e_1, e_2, \dots e_{i-1}, e_{i+1}, \dots e_j, e_i, e_{j+1}, \dots e_m)</tex>. Работает за <tex>O(m^5)</tex>, где <tex>m</tex> — количество ребер в графе. |
====Улучшенный jump-оператор==== | ====Улучшенный jump-оператор==== | ||
Лучших результатов можно достичь, если использовать только операции вида <tex>jump(i, 1)</tex>. Тогда время работы будет <tex>O(m^5)</tex>. | Лучших результатов можно достичь, если использовать только операции вида <tex>jump(i, 1)</tex>. Тогда время работы будет <tex>O(m^5)</tex>. | ||
| − | |||
=== Алгоритм === | === Алгоритм === | ||
==== Представление графа ==== | ==== Представление графа ==== | ||
| Строка 17: | Строка 16: | ||
==== Операция мутации ==== | ==== Операция мутации ==== | ||
==== Выбор вершин для мутации ==== | ==== Выбор вершин для мутации ==== | ||
| + | ===Литература=== | ||
| + | * [http://rain.ifmo.ru/~tsarev/teaching/ea-2012/lectures/p1203-doerr.pdf Doerr B., Johannsen D. Adjacency List Matchings - An Ideal Genotype for Cycle Covers] | ||
Версия 20:12, 17 июня 2012
Содержание
Постановка задачи
| Определение: |
| Эйлеров цикл в графе — это путь, проходящий по всем рёбрам графа ровно по одному разу. Задача — для заданного графа найти такой путь. |
Предыдущие результаты
Перестановка ребер
Пусть для графа задан набор всех его ребер . На каждом шаге два случайно выбранных ребра меняются местами. Фитнес-функция — длина максимального пути в множестве ребер. Алгорим работает за экспоненциальное от количества ребер время.
Jump-оператор
Jump-оператор работает следующим образом. Для набора ребер оператор передвигает -й элемент на позицию и циклически сдвигает ребра между позициями и влево (если то вправо) . Таким образом набор превратиться в . Работает за , где — количество ребер в графе.
Улучшенный jump-оператор
Лучших результатов можно достичь, если использовать только операции вида . Тогда время работы будет .